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Abstract

In the framework of judgment aggregation, we assume that some formulas of
the agenda are singled out as premisses, and that both Independence (formula-wise
aggregation) and Unanimity Preservation hold for them. Whether premiss-based ag-
gregation thus defined is compatible with conclusion-based aggregation, as defined
by Unanimity Preservation on the non-premisses, depends on how the premisses are
logically connected, both among themselves and with other formulas. We state neces-
sary and sufficient conditions under which the combination of both approaches leads
to dictatorship (resp. oligarchy), either just on the premisses or on the whole agenda.
Our analysis is inspired by the doctrinal paradox of legal theory and is arguably rel-
evant to this field as well as political science and political economy. When the set
of premisses coincides with the whole agenda, a limiting case of our assumptions, we
obtain several existing results in judgment aggregation theory.
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1 Introduction

The theory of judgment aggregation - or logical aggregation, as we call it here - origi-
nates in a famous conundrum of legal theory, i.e., the doctrinal paradox of Kornhauser
[16] and Kornhauser and Sager [18].1 This is the problem of how a multi-judge court
should decide a case when its members disagree on some of the legal issues that bear
on the case according to the prevailing legal doctrine; by the latter is meant a system-
atized version of the existing jurisprudence and statutes. Prima facie, there are two
plausible ways for the court to reach a decision by taking majority votes. One - the
issue-based method - is to have the judges vote separately on each issue underlying
the case, and then draw the logical consequences that the legal doctrine entails in view
of these results. The other - the case-based method - consists in collecting the judges’
votes on the case alone, regardless of how they assess the issues. For some patterns of
opinions, the two methods deliver opposite results. In Kornhauser and Sager’s view,
this discrepancy constitutes a paradox because, for one, it comes as a surprise, and
for another, it leads to a hard choice; indeed, either method can recommend itself
on some normative grounds. Further, the paradox is doctrinal, because it jeopardizes
the conformity to the legal doctrine at the collective level: if the court takes polls on
both the issues and the case, its overall position clashes with the legal doctrine any
time the discrepancy occurs.

Here is the didactic, by now celebrated, example by which Kornhauser and Sager
illustrate their paradox. Suppose that there are three judges 1, 2 and 3, who should
collectively decide on a case of breach of contract. The legal doctrine, which each
judge acknowledges, states that the defendant owes a compensation to the plaintiff
(= c) if and only if the contract between them is valid (= a) and the defendant broke
it (= b). Judges follow the issue-based method if they vote on a and b, and then apply
the biimplicative doctrine to conclude, and they follow the case-based method if they
directly vote on c. Specifically, suppose that they entertain the following opinions on
a, b, c (observe that each individually obeys the legal doctrine):

a
‘contract
valid’

b
‘contract
broken’

c
‘compensation

due’
the legal
doctrine

Judge 1 Y Y Y Y
Judge 2 N Y N Y
Judge 3 Y N N Y
Court, issue-based Y Y Y Y
Court, case-based N

As the table shows, the plaintiff would be compensated on one method but not on
the other. Since this and related examples circulated among legal theorists, they have
been arguing about the merits of the two ways, sometimes taking one to be superior
to the other, sometimes taking both to be questionable and seeking a third way of
escape.2

1These works are the proper references for the doctrinal paradox. The widely cited paper by
Kornhauser and Sager [17] is the first to raise the decision problems of a multi-judge court, but
without yet formulating the paradox.

2See the survey of proposed solutions in Nash [22]. Kornhauser and Sager [18] themselves favour a
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Following the lead of Pettit [30] and List and Pettit [20], the theory of logical ag-
gregation has encapsulated the doctrinal paradox into a complex net of impossibility
theorems, roughly paralleling the move in social choice theory from the Condorcet
paradox to Arrow’s theorem. However, this work had less effect on legal theory than
the earlier one did on political science. Neither Kornhauser and Sager nor their fol-
lowers have paid much attention to the impossibility theorems. Though it contributes
to the same technical corpus, the present paper is motivated by the thought that this
communication failure should, if possible, be remedied.

Logical aggregation theorists handle the doctrinal paradox in terms of a logical
language in which they express not only the propositions relative to the issues and
the case, but also the legal doctrine itself, and this may be a cause of dissatisfaction
for the legal theorists, given the complexity and elusiveness of the latter concept.
We will attend to this objection in our logical treatment of the doctrine, but we are
primarily concerned with another twist, which consists in treating all propositions,
including the doctrine, on a par. The logical aggregation theorists’ basic move is to
gather all relevant propositions into a single set of logical formulas, called the agenda,
and then attribute to each individual and the aggregate a judgment set, which is made
out of accepted agenda formulas. Within this framework, the distinction between the
issues and the case vanishes. The logical properties of judgment sets become the sole
focus of attention, and the doctrinal paradox boils down to the inconsistency in the
judgment set resulting from majority votes:

{a, b, c ↔ a ∧ b,¬c} .

Legal theorists could complain that the doctrinal paradox was defined more specifi-
cally. For them, it means the conflict between two methods of decision, or in logical
terms, the contradiction between those two formulas - c and ¬c - which the methods
deliver to resolve the case, a definition lost in the new framework.

We address this concern by making a limited technical modification to the existing
theory. We keep the judgment sets and investigate their logical properties, but sub-
divide the agenda X into premisses and non-premisses, a distinction that abstractly
generalizes Kornhauser and Sager’s between the issues and the case. We allow any
non-empty subset P of X, including P = X, to count as a set of premisses, provided
it contains the negation of each of its member formulas. For the doctrinal paradox
agenda, given by

X = {a, b, c, c ↔ a ∧ b,¬a,¬b,¬(c ↔ a ∧ b)} ,

legal theory would suggest taking as premisses a, b, and possibly c ↔ a ∧ b if a vote
is taken on the legal doctrine, plus the negations; but we would allow for many other
choices of P .

Similarly, we abstractly generalize the distinction between issue-based and case-
based methods. Taking majority voting only as a special case, we define the premiss-
based approach by the twofold condition that the aggregative rule satisfies Indepen-
dence (i.e., formula-wise aggregation) on P and Unanimity Preservation on P . As

third way, consisting for the court in voting on the method to be applied (the "metavote" solution).
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to the conclusion-based approach, we define it by the single condition that the ag-
gregative rule satisfies Unanimity Preservation on X\P . In this way, the doctrinal
paradox reduces to the following question: to what extent are the premiss-based and
conclusion-based approaches mutually compatible? This amounts to asking to what
extent Independence on P is compatible with Unanimity Preservation on the whole
of X.

As defined here, the conclusion-based approach is sufficiently modest to be prima
facie agreeable to the premiss-based approach. Having left this way of escape, if
we eventually find that our axiomatic conditions clash, we will have extended the
doctrinal paradox the more significantly. This is indeed the outcome of the paper,
and it should strike legal theorists as relevant to their own inquiry. Technically, we
will prove necessary and sufficient conditions on P and X for any aggregative rule
satisfying restricted Independence and global Unanimity Preservation to be dictato-
rial on the premisses (Theorem 1) or, more strongly, on all formulas (Theorem 2);
an oligarchic variant accompanies these impossibility theorems. The conditions on P
and X, which amount to connecting the premisses logically, can be met in a number
of different ways.

Earlier works in logical aggregation theory have examined premiss-based and
conclusion-based aggregative rules. But their definitions of premisses are more re-
strictive the present one. They superimpose one or several of the following features
of premisses: (i) premisses obey a definite logical pattern, typically logical indepen-
dence; (ii) premisses are fully determining, i.e., if decisions are made for or against
all premisses, decisions result for or against all non-premisses; (iii) only one formula
(and its negation) are not premisses, but ‘conclusions’.3 Surprisingly, none of these
features is required for our impossibility results. Some of the earlier writers have
impossibility results too, but use independence unrestrictedly, with the exceptions of
Dietrich [2] and Mongin [21], and also implicitly of Nehring [23].4

In the limiting case P = X, Theorems 1 and 2 (and their accompanying variants)
reduce to known impossibility theorems derived under unrestricted independence,
including results in the present symposium. See the detailed literature review in
section 5. Our proof techniques build on that earlier work. The initial version of this
paper also strengthened the existing theory by allowing for infinite populations, but
since this is an orthogonal direction of generality, it eventually seemed best to pursue
it elsewhere.5

3Premisses have been conceptualized variously. List and Pettit [20] and Dietrich [2] assume (i);
Nehring and Puppe [26], (ii); Mongin [21] and Dokow and Holzman [11], (i) and (ii); Nehring and
Puppe [27], (i) and (iii); and Nehring [23], all the three. Dietrich’s [3] relevance-based definition may
be the only one without any such restrictions.

4Dietrich and List [7] also restrict independence in their positive characterization of strategy-
proofness.

5Results for infinite populations are to be found in sections 4 and 5 of the preprint version (Dietrich
and Mongin [10]).
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2 A general logic framework

A logic consists of a logical language, which defines the permissible formulas, and
of a formal statement of logical links between these formulas. In logical aggregation
theory, the propositions on which the individuals and society make judgments are
represented by formulas, and the acceptance of formulas should respect the logical
links. Since Dietrich [4], it has become clear that the theory does not need to be
specific about either side of the logic, and importantly, that it is not limited to the
propositional calculus. Recall that the language of the propositional calculus consists
of propositional variables (which stand for the elementary propositions, like a, b, c
in the doctrinal paradox example) and Boolean connectives (¬, ∧, ∨, →, ↔, which
stand for "not", "and", "or", "if-then", "if-and-only-if"). The general logic of this
paper abstracts from this choice of language, as well as from the specific definition of
logical links in the propositional calculus.

The logical language L. Its formulas, designated by ϕ, ψ, χ..., are typically con-
structed from elementary formulas, to be designated by a, b, c..., and logical symbols,
among which ¬ must be present. Formally, all we impose on L is that for all ϕ ∈ L,
¬ϕ ∈ L. There may or may not be in L symbols of further Boolean connectives and
of non-Boolean operators. In the legal context, two relevant examples of the latter
group are the unary operators of deontic logic - symbolically, O, which stands for "it
is obligatory that", and its dual P , which stands for "it is permissible that". Formally,
O and P take any formula ϕ in L into another formula in L, Oϕ resp. Pϕ. Unlike
¬, O and P are non-Boolean, or equivalently, not truth-functional ; that is to say,
knowing the truth-value of ϕ is sufficient to fix the truth-value of ¬ϕ, but not that of
Oϕ or Pϕ (think of "it is obligatory to pay one’s taxes" as an example of this).

Another relevant, this time binary, non-Boolean operator is the implication of
conditional logic, symbolically ϕ →֒ ψ. The difference with the so-called material
or classical implication → is again that → is truth-functional but →֒ is not, i.e.,
the truth-values of ϕ and ψ determine that of ϕ → ψ but not that of ϕ →֒ ψ.
There are alternative ways to define →֒, which are explored in conditional logic but
not reviewed here. Arguably, the legal doctrine of Kornhauser and Sager should be
paraphrased as "the defendant would owe a compensation to the plaintiff if and only
if the contract between them were valid and the defendant had broken it", or "as a
matter of legal obligation, the defendant owes a compensation to the plaintiff if and
only if the contract between them is valid and the defendant broke it", both analyses
leading again into the non-classical realm.6

The logical links within L. They can be stated in two ways, either by defining
an entailment relation ⊢, or by defining a set I of inconsistent subsets of L. Since
both notions are technically useful, it is immaterial which is chosen as a primitive,
provided that the two are interdefinable. Section 7 makes the two axiomatic exercises
in turn, expanding on Dietrich’s [4] analysis. At this stage, we take inconsistency as
being the primitive. Any subset I ⊆ 2L satisfying the conditions (I1)-(I5) in section

6The non-classical biimplication is of the subjunctive (or counterfactual) type in the first para-
phrase, and of the strict (or strong) type in the second. See Lewis [33]. For an application to
judgment aggregation, see Dietrich [5].
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7 can be chosen to represent the set of inconsistent subsets. Then, derivatively, a set
S ⊆ L entails ϕ ∈ L - written S ⊢ ϕ - if S ∪ {¬ϕ} ∈ I; and ϕ is a logical truth if
{¬ϕ} ∈ I, a contradiction if {ϕ} ∈ I, and a contingent formula if neither holds. The
entailment relation automatically satisfies the conditions (E1)-(E6) of section 7. For
later technical purposes, we define S ⊆ L to be minimally inconsistent if S ∈ I and
for all T � S, T �∈ I.

The agenda and the judgment sets. The agenda represents the propositions on
which judgments are passed, at both the individual and collective level. Formally, it
is any non-empty subset X ⊆ L that contains only contingent formulas and takes the
form of a union of pairs {ϕ,¬ϕ}, where ϕ does not begin with ¬. From now on, when
we write "¬ψ" with ψ ∈ X, we mean the other element of the pair to which ψ belongs.
For any S ⊆ X, we put S± = {ϕ,¬ϕ : ϕ ∈ S} and define S to be negation-closed
if S = S±. A subagenda of X is any non-empty and negation-closed subset P ⊆ X.
A judgment set is a set B ⊆ X of formulas representing the propositions accepted
by an individual or the collectivity. It is complete with respect to S ⊆ X if for all
ϕ ∈ S, ϕ ∈ B or ¬ϕ ∈ B, and deductively closed with respect to S if for all ϕ ∈ S, it
follows from B ⊢ ϕ that ϕ ∈ B. When S = X, we just call B complete (respectively,
deductively closed).

If a consistent judgment set is complete, then from the conditions of section 7, it
is also deductively closed, while the converse does not hold. Accordingly, we define
D to be the set of all judgment sets that are consistent and complete, and D∗ ⊃ D
to be the set of all judgment sets that are consistent and deductively closed.

We consider a set of individuals N of any cardinality |N | ≥ 2 (the group in
question), and define a social judgment function as a mapping

F : DN → 2X ,

with DN → D and DN → D∗ as particular cases. Here, DN is the (unrestricted)
domain of all possible profiles (Ai)i∈N of judgment sets across the group. Our main
theorem assumes N to be finite, but most of our preparatory lemmas are stated
without this restriction.

3 The axioms on social judgment functions

We represent the propositions singled out as premisses in terms of any fixed subagenda
P ⊆ X, with the letters p, q, r,... to denote its elements. Now, consider the following
two axioms:

Independence on P . For all p ∈ P and all (Ai)i∈N , (A∗i )i∈N ∈ DN , if for all
i ∈ N , p ∈ Ai ⇔ p ∈ A∗i , then

p ∈ F ((Ai)i∈N)⇔ p ∈ F ((A∗i )i∈N).

In words, aggregation takes place formula by formula on P .

Unanimity Preservation. For all ϕ ∈ X and all (Ai)i∈N ∈ DN , if for all i ∈ N ,
ϕ ∈ Ai, then ϕ ∈ F ((Ai)i∈N).
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By definition, any F satisfying both Independence on P and Unanimity Preser-
vation also restricted to P belongs to the premiss-based approach, and any F sat-
isfying Unanimity Preservation restricted to X\P belongs to the conclusion-based
approach. To illustrate the two approaches, consider premiss-based majority voting
FPBM and conclusion-based majority voting FCBM , respectively. Given N of finite
cardinality, for every profile (Ai)i∈N ∈ DN , we define FPBM((Ai)i∈N) by first taking
Pmaj = {p ∈ P : |{i : p ∈ Ai}| > |N |/2}, and then putting

FPBM((Ai)i∈N) = Pmaj ∪ {ϕ ∈ X\P : Pmaj ⊢ ϕ}.

The judgment sets generated by FPBM are in D∗ if P has no minimal inconsistent
subset Y with |Y | ≥ 3 and |N | is odd. As to FCBM , given N of finite cardinality, it
is defined by putting

PCBM((Ai)i∈N) = {ϕ ∈ X\P : |{i : ϕ ∈ Ai}| > |N |/2}

for every profile (Ai)i∈N ∈ DN .

The premiss-based approach excludes constant social judgment functions, but
allows for oligarchy and dictatorship. Define F to be an oligarchy on P if there
is a non-empty M ⊆ N - the oligarchs on P - such that, for all (Ai)i∈N ∈ DN ,
F ((Ai)i∈N)∩P = ∩i∈M(Ai∩P ), and to be a dictatorship on P if F is an oligarchy on
P with M = {i} for some i, the dictator on P . Dictatorship and oligarchy simpliciter
refer to the whole of X. Generally, any condition or rule that does not mention a set
is meant to refer to X.7

Whether a social judgment function for finite N degenerates into dictatorship
or oligarchy on P when satisfying Independence on P and Unanimity Preservation
depends on how the premisses are logically connected, both with each other and with
formulas in X\P . We introduce the three conditions that section 4 demonstrates to be
pivotal. The last one requires an auxiliary notion: for any ϕ, ψ ∈ X, ϕ conditionally
entails ψ - symbolically, ϕ ⊢∗ ψ - if there is a (possibly empty) set Y ⊆ X such that
Y ∪{ϕ} ⊢ ψ and both Y ∪{ϕ} and Y ∪ {¬ψ} are consistent.8 The shorthand Y¬Z
denotes (Y \Z)∪{¬ϕ : ϕ ∈ Z}, i.e., the set obtained from Y by negating the formulas
of one of its subsets Z.

CONDITIONS ON PREMISSES:

(a) There is a minimal inconsistent set Y ⊆ X such that |Y ∩ P | ≥ 3.

(b) There is a minimal inconsistent set Y ⊆ X such that Y¬Z is consistent for
some set Z ⊆ Y ∩ P of even cardinality.

(c) For all p, q ∈ P , there is a sequence p1, ..., pk ∈ P (k ≥ 2) such that p = p1 ⊢
∗

p2 ⊢
∗ ... ⊢∗ pk = q.

7Oligarchy here obeys the definition of Dietrich and List [8] or Dokow and Holzman [13]. Gärden-
fors [14], Nehring [24], Nehring and Puppe [26] and Dokow and Holzman [11] have different notions.

8Using that our logic is compact (see section 7), the conditional entailment ϕ ⊢∗ ¬ψ can equiv-
alently be defined by the property that ϕ �= ¬ψ and that there exists a minimal inconsistent set
Y ′ ⊆ X containing both ϕ and ¬ψ.
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In the statement of (b), ‘of even cardinality’ can be changed into ‘of cardinality
two’; the equivalence is shown in the proof of Lemma 3 in section 8.

These conditions parallel existing ones (as discussed in section 5), but unconven-
tionally refer to P . The connections stated by (a), (b), (c) can either take place inside
or outside P . At one extreme, there can be none in terms of P alone, except for the
trivial ones between p and ¬p; then, the inconsistent sets Y of (a) and (b) necessarily
contain non-premisses, and similarly with the sets Y1, ..., Yk supporting conditional
entailments in (c). Such is the case when the premisses are logically independent,
and in particular when they are the literals of the propositional calculus (the liter-
als are the propositional variables and their negations). For another example, take
X = {a, a → b, b}± and P = {a, a → b}±. Although the members of P are not
logically independent, they typically become so if a non-classical a →֒ b replaces the
material a → b. Indeed, most axiomatizations in conditional logic make the truth-
values of a and a →֒ b independent of each other; emphatically, the truth of the
implication cannot be concluded anymore from the falsity of its antecedent. At the
other extreme, all relevant interconnections trivially take place within P if P = X.

Though substantial, the list does not seem exaggeratedly demanding. Condition
(a) is flexible. If, e.g., P = {a, b, c}±, it can be met by taking X to contain one of
a ∨ b ∨ c, (a → (b → c)), (a ↔ (b ↔ c)), or still other formulas. Condition (c) can
be met with highly roundabout connections, and (b) may be the easiest to satisfy.
If, e.g., X = {a, b, a ∧ b}± and P = {a, b}±, (b) holds with Y = {a, b,¬(a ∧ b)} and
Z = {a, b}, whereas (a) and (c) fail.

4 Main results

To get an idea of how logical interconnections narrow down the set of possible social
judgment functions, observe how FPBM can violate Unanimity Preservation. Take
the doctrinal paradox agenda with X = {a, b, c ↔ a ∧ b, c}±, and unconventionally,
let P = {a, b, c}±. If (Ai)i∈N is the profile of the introduction, all individuals accept
the non-premiss c ↔ a ∧ b, and yet

FPBM((Ai)i∈N) = {a, b,¬c,¬(c ↔ a ∧ b)}.

The following theorem encompasses this and many other troubling examples. Its
conclusions vary in strength with the requirement placed on collective judgment sets.

Theorem 1. Suppose that N is finite with |N | ≥ 3. Then, if (a), (b) and (c)
hold, every social judgment function F : DN → D∗ (resp. D) that is independent
on P and unanimity-preserving is an oligarchy (resp. a dictatorship) on P , and the
converse implication also holds.

As the proof makes clear, the direct statement also holds for |N | = 2, but the
counterexamples to establish the converse take at least |N | = 3. This proof is subdi-
vided into nine lemmas reported in this section and proved in section 8. Some make
use of two further properties of social judgment functions that need now introducing.
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Systematicity on P . For all p, p∗ ∈ P and all (Ai)i∈N , (A∗i )i∈N ∈ DN , if for all
i ∈ N , p ∈ Ai ⇔ p∗ ∈ A∗i , then

p ∈ F ((Ai)i∈N)⇔ p∗ ∈ F ((A∗i )i∈N).

Monotonicity on P . For all p ∈ P and all (Ai)i∈N , (A∗i )i∈N ∈ DN , if for all
i ∈ N , p ∈ Ai ⇒ p ∈ A∗i , and for some j ∈ N , p /∈ Aj and p ∈ A∗j , then

p ∈ F ((Ai)i∈N)⇒ p ∈ F ((A∗i )i∈N).

By itself, the proof of Theorem 1 brings to light three more results holding un-
der the previous cardinality restrictions on N . These are variants, not corollaries of
the theorem, because they involve both weaker assumptions and weaker conclusions.
Briefly put, Systematicity on P makes it possible to dispense with condition (c), and
Monotonicity on P with condition (b). Technically:

(i) If and only if (a) and (b) hold, every social judgment function F : DN → D∗

(resp. D) that is systematic on P and unanimity-preserving is an oligarchy (resp. a
dictatorship) on P ;

(ii) If and only (a) holds, every social judgment function F : DN → D (resp. D∗)
that is systematic on P , monotonic on P , and unanimity-preserving, is an oligarchy
(resp. a dictatorship) on P ;

(iii) If and only if (a) and (c) hold, every social judgment function F : DN → D∗

(resp. D) that is independent on P , monotonic on P , and unanimity-preserving is an
oligarchy (resp. a dictatorship) on P .

The lemmas use the classic set-theoretic language of filters and ultrafilters that
logical aggregation theorists have borrowed from social choice theory. None of the
involved notions require N to be finite, which is precisely the reason why they were
first introduced. The finiteness assumption is made only in Lemma 5 to secure the
familiar steps from filters to oligarchies, and ultrafilters to dictatorships.

For concreteness, we refer to subsets C ⊆ N as coalitions. Now, a set of coalitions
D ⊆ 2N is superset-closed if for all coalitions C, C∗, C ∈ D and C ⊆ C∗ ⊆ N imply
C∗ ∈ D; intersection-closed if for all coalitions C, C∗, C, C∗ ∈ D ⇒ C ∩ C∗ ∈ D;
complete if for all coalitions C, C /∈ D ⇒ N\C ∈ D; a filter if D is superset-
closed and intersection-closed, with ∅ /∈ D.9 Finally, an ultrafilter is a filter that is
complete.10

For any social judgment function F : DN → 2X , let us say that D ⊆ 2N generates
F on p ∈ P if

(∗) ∀(Ai)i∈N ∈ DN , p ∈ F ((Ai)i∈N)⇔ {i : p ∈ Ai} ∈ D.

We then denote D by CFp . This functional notation makes sense because there can
be at most one such D. If moreover the same D generates F on every p ∈ P , we

9Filters are sometimes defined without requiring ∅ /∈ D, in which case our filters become the proper
filters. See Chang and Keisler [1, p. 164].

10Or, equivalently, a filter that is maximal for set inclusion.
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say that D generates F on P and denote it by CF . For concreteness again, we call
the members of CF (F -)winning coalitions (on P ). When there is no ambiguity, we
may drop reference to F , writing Cp for CFp and C for CF . To illustrate, suppose
that F is an oligarchy on P with a set of oligarchs M ⊆ N ; then, F is generated by
CF = {C ⊆ N : C ⊆ M}.

Lemma 1. A social judgment function F : DN → 2X is (i) independent on P if
and only if for every p ∈ P , there is CFp ⊆ 2

N generating F on p, and (ii) systematic

on P if and only if there is CF ⊆ 2N generating F on P .

An example of a social judgment function that is independent on P , but not
systematic on P , is the constant rule F ((Ai)i∈N) = A, for any fixed A ⊆ X. Here,
CFp = 2

N if p ∈ A and CFp = ∅ if p /∈ A.

Lemma 2. Let a social judgment function F : DN → D∗ be independent on P .
Then, for all p ∈ P and all C ⊆ N , if C ∈ CFp , then N\C /∈ CF¬p, and if moreover

F : DN → D, the converse implication holds. Also, N ∈ CFp and ∅ /∈ CFp if F is
unanimity-preserving.

Lemma 3. Assume (b). Then, if a social judgment function F : DN → D∗ is
systematic on P and unanimity-preserving, CF is superset-closed.

Lemma 4. Assume (a) and (b). Then, if a social judgment function F :DN → D∗

is systematic on P and unanimity-preserving, CF is intersection-closed.

Lemma 5. Assume (a) and (b). Then, if a social judgment function F : DN →
D∗ (resp. D) is systematic on P and unanimity-preserving, CF is a filter (resp.
ultrafilter), and for finite N , F is an oligarchy (resp. dictatorship) on P .

This implies one direction of Theorem 1 via a last lemma.

Lemma 6. If a social judgment function F : DN → D∗ is independent on P and
unanimity-preserving, then for all p, q ∈ P , p ⊢∗ q ⇒ Cp ⊆ Cq; and if (c) also holds,
F is systematic on P .

As to the variants of Theorem 1, the sufficiency part in (i) is already proved at
the stage of Lemma 5, while those in (ii) and (iii) follow from adapting Lemmas 4
and 5 slightly.11

The other direction of Theorem 1 follows from the next three lemmas, using the
fact that an oligarchy (hence also a dictatorship) on P is necessarily generated on P
by a filter CF .

11That F is monotonic on P should replace (b) in Lemmas 4 and 5. Inspection of the proofs shows
that they carry through.
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Lemma 7. If |N | ≥ 3 and (a) is violated, a social judgment function F : DN → D
exists that is systematic (hence independent) on P and unanimity-preserving, and
such that CF is not a filter.

Lemma 8. If |N | ≥ 3 and (b) is violated, a social judgment function F : DN → D
exists that is systematic (hence, independent) on P and unanimity-preserving, and
such that CF is not a filter.

Lemma 9. If (c) is violated, a social judgment function F : DN → D exists that
is independent on P and unanimity-preserving, and such that CFp is not the same for
all p ∈ P .

5 Applications and connections with the literature

In this section, we consider special sets P for which the results of the previous section
are simplified, and by this process obtain earlier theorems as corollaries; this leads us
to discuss the extant literature. We also illustrate the premiss-based approach with
examples of P that are relevant to legal theory and beyond.

First, suppose that P = X. Then, Independence on P becomes (standard) In-
dependence; (c) becomes total blockedness (introduced by Nehring and Puppe [25],
later adopted by Dokow and Holzman [12] and others); (b) becomes even-number-
negatability (Dietrich [4]), which is equivalent to non-affineness for finite X (Dokow
and Holzman [12]); finally, (a) can be dropped as it follows from total blockedness.
As a corollary of Theorem 1, we obtain a by now classic result:

Corollary 1. Suppose N is finite and |N | ≥ 3. If the agenda is even-number-
negatable and totally blocked, every independent and unanimity-preserving social
judgment function F : DN → D∗ (resp. D) is an oligarchy (resp. a dictatorship),
and the converse implication also holds.

Concerning the dictatorial agenda, see Dokow and Holzman [12] for the full charac-
terization, and Dietrich and List [6] for the sufficiency part. Concerning the oligarchic
agenda, see the characterizations in Dietrich and List [8] and Dokow and Holzman
[13]. The three variants of Theorem 1 based on Systematicity and/or Monotonic-
ity imply corresponding variants of Corollary 1, which are also known; see Nehring
and Puppe [25, 28] for the two Monotonicity-based dictatorship variants, which were
the first to be discovered. Some of the results we recover were originally proved for
a finite X, a restriction that we avoid by occasionally drawing on the compactness
assumption of section 7.

By contrast, Theorem 1 has no direct bearing on those impossibility results which
do not have Unanimity Preservation among their stated conditions.12 Nor does it
generalize oligarchy results based on other oligarchy notions, as referenced in fn. 7.

12As in List and Pettit [20], Dietrich [2, 4], Pauly and van Hees [29], van Hees [34], Dietrich and
List [6, 9].
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Theorem 1 provides representations of the social judgment function that are lim-
ited to P . When does the local dictatorship result translate into a global one? Here
is the relevant condition:

(d) For all S ⊆ P that are consistent and complete with respect to P , and all
ϕ ∈ X, either S ⊢ ϕ or S ⊢ ¬ϕ.

In view of the logical conditions of section 7, it is equivalent to require that for
all B ∈ D,

B = {ϕ ∈ X|B ∩ P ⊢ ϕ} .

In words, any complete and consistent judgment set can be recovered from its pre-
misses by entailment.13 The following theorem gives necessary and sufficient condi-
tions for global dictatorship.

Theorem 2. Suppose N is finite and |N | ≥ 3. If (a), (b), (c) and (d) hold, every
social judgment function F : DN → D that is independent on P and unanimity-
preserving is a dictatorship, and the converse implication also holds.

To derive the two directions of Theorem 2 from the corresponding ones in Theorem
1, we draw on two more lemmas.

Lemma 10. Assume (d) holds. If a social judgment function F : DN → D is a
dictatorship on P , it is a dictatorship.

Lemma 11. Let N be finite. If (d) is violated, a social judgment function
F : DN → D exists that is systematic (hence independent) on P and unanimity-
preserving, but is not a dictatorship.

A fully determining set of premisses P , in the sense of (d), should be seen as
exceptional, which reduces the impossibility flavour of Theorem 2 and its variants
(they can be devised after those of Theorem 1). With the doctrinal paradox agenda
X = {a, b, c ↔ a ∧ b, c}±, (d) is met with P = {a, b, c ↔ a ∧ b}±, but not with
P = {a, b}±. The latter choice of P is not implausible on legal grounds, because
a court that would adopt it could adjust its position on the legal doctrine to the
positions it takes on a, b, and c.14 This facilitates compatibility with premiss-based
majority voting, but at the cost of wrecking full determination. However, even the
larger and more conventional P does not fully determine X if the material ↔ gives
way to a non-classical ←֓ →֒, as in our preferred reconstruction of the legal doctrine.
(Take the set S = {¬a, b,¬(c ←֓ →֒ a ∧ b)}; it entails neither c nor ¬c.)

For the sake of generality, we may consider a partly determining P , as defined
by an existential variant (d’) of (d) (i.e., with "some S ⊆ P" replacing "all S ⊆
P"). A profile dictator for some (Ai)i∈N ∈ DN is an individual j such that Aj =

13Condition (d) or related ones are also considered by Dietrich [2], Nehring and Puppe [26, 27],
and Dokow and Holzman [11].

14That judges revise their conception of the doctrine in view of the case is a possibility essential
to the British and US common law.
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F ((Ai)i∈N). Even for finite N , if (a)-(c) and (d’) hold, F meeting the conditions need
not be a dictatorship on the full domain DN , though it is a profile dictatorship for all
(Ai)i∈N ∈ DN such that Aj ∩P entails every non-premiss or its negation, where j is
the dictator on P (who exists by Theorem 1). For instance, if P = {a, c, c ↔ a∧ b}±,
a case where (d) fails but (d’) holds, the individual j is a profile dictator for those
(Ai)i∈N ∈ DN with Aj = {a, c, c ↔ a ∧ b, ...}, but not for those (Ai)i∈N ∈ DN with
Aj = {¬a,¬c, c ↔ a ∧ b, ...}.

At the other extreme of the mainstream literature, Mongin [21] specializes in a
very small set of premisses, defining P to be the set of literals of X ⊆ L, where
L is the language of standard propositional logic. Using properties of the inference
rule of propositional logic, he shows that Independence on P , with P so defined,
leads to dictatorship in the presence of Unanimity Preservation. This result can
also be obtained from Theorem 2, because its stated agenda conditions entail the
present conditions (a), (b), (c) and (d). Technically, Mongin assumes (a), a condition
amounting to (b), given that even-number and binary negatability are equivalent
(see section 3), (c), and Closure under Propositional Variables, which is essentially
equivalent to (d) given his choice of logic. According to the last condition, P should
contain the propositional variables a ∈ L that occur in any formula ϕ ∈ X.15

We end up this section with sets of premisses that are specially relevant to appli-
cations in legal theory and politics; they will also illustrate the possibility side of our
results. Starting from a propositional conditional logic, take X and P such that X\P
contains only literals; these will represent the decision- or policy-oriented propositions
(such as "the defendant owes a compensation to the plaintiff", since this commits the
court to implement an action, unlike "the contract was broken"). Suppose further
that P contains only formulas of the following types:

1. Literals representing the factual and prescriptive reasons for or against the
decisions.

2. Non-classical implications p →֒ ϕ, or negations thereof, with p belonging to
type-1 premisses or the Boolean expressions built from them, and ϕ belonging
to the non-premisses or the Boolean expressions built from them.

In many conditional logics, with negated type 2 premisses, nothing can be inferred
on non-premisses, and thus some judgment sets will not state anything on the deci-
sions to be taken. This already shows that (d) does not hold, hence from Theorem
2 that there exist non-dictatorial social judgment functions among those which are
independent on P and unanimity-preserving. Condition (c) does not hold either,
because - at least in various conditional logics - negated type-2 premisses entail no
premisses other than negated type-2 premisses. Thus, from Theorem 1, there exist
social judgment functions that are well-behaved even on P .

By contrast, conditions (a) and (b) can easily be met, so that the first two variants
of Theorem 1 still apply. Suppose that a, b, a ∧ ¬b →֒ ϕ ∈ P , where {a,¬b} is
consistent, and ϕ ∈ X\P . Then, (a) and (b) hold with Y = {a,¬b, a ∧ ¬b →֒ ϕ,¬ϕ}
and Z = {a,¬b}, so the first two variants of Theorem 1 predict that plausible rules

15By the propositional calculus, Closure under Propositional Variables entails (d), and if its de-
finition is slightly weakend, with "occur" being replaced by "occur essentially", the two become
equivalent (as an example, a does not essentially occur in b ∧ (a ∨ ¬a)).
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such as premiss-based majority voting will degenerate. As this argument shows, the
doctrinal paradox is tenacious.

6 Conclusion

Starting afresh from Kornhauser and Sager’s legal analysis, we have tried to remain
more faithful to it than logical aggregation theory has usually been. Because they
define the doctrinal paradox as a conflict between the issue-based and case-based
methods of court decisions, the theory cannot claim to pursue it in the same sense
unless it formalizes a related distinction. In responding to this problem, our defi-
nitions of the premiss-based and conclusion-based approaches led us to restate the
doctrinal paradox as a tension between two axioms put on a social aggregation func-
tion, Independence on premisses and Unanimity Preservation on both premisses and
non-premisses. Theorems 1 and 2, along with their variants, demonstrate that all
functions satisfying the two axioms degenerate into dictatorships or oligarchies, ei-
ther local or global, under moderately demanding conditions put on the agenda and
the set of premisses. Viewed in this light, the doctrinal paradox appears to be a deep
obstacle to the formation of collective judgments.

7 The general logic

This section states the general logic under which our results are proved.16 Most actual
logics, whether classical or not, satisfy the conditions below. The major exceptions
are the recently developed non-monotonic logics, which mean to capture inductive,
rather than deductive, reasoning, and are out of scope here, and the paraconsistent
logics, which are deductive and call for an explanation below.

One way of capturing the general logic is by axiomatizing logical inconsistency, or
more precisely, a set I of subsets S ⊆ L that are intended to represent the inconsistent
sets of formulas:

(I1) ∅ /∈ I (non-triviality).

(I2) For all ϕ ∈ L, {ϕ,¬ϕ} ∈ I (reflexivity).

(I3) For all S ⊆ L and all ϕ ∈ L, if S �∈ I, either S ∪ {ϕ} �∈ I or S ∪ {¬ϕ} �∈ I
(one-step completability).

(I4) For all S ⊆ S′ ⊆ L, if S ∈ I, then S′ ∈ I (monotonicity).

(I5) For all S ⊆ L, if S ∈ I, there is a finite S0 ⊆ S such that S0 ∈ I (compact-
ness).

Given (I4) and (I5), (I3) implies the following stronger property.

(I3+) For all S ⊆ L, if S /∈ I, there is T ⊆ L such that S ⊆ T , T /∈ I, and T
contains a member of each pair ϕ,¬ϕ ∈ L (completability).

16The general logic of this section is equivalent to Dietrich’s [4] one, but improves on its axioma-
tization by formulating and making extensive use of the new condition of one-step completability -
i.e., (I3) and (E3) below.
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Proposition 1 If (I3)-(I5) hold, so does (I3+).

Proof. Take a consistent set S ⊆ L. Let T be the set of all consistent sets T ⊆ L
which include S; it is partially ordered by set-inclusion ⊆.

Claim 1. Every chain T ∗ ⊆ T (i.e., every linearly ordered subset of T ) has an
upper bound in T .

Let T ∗ ⊆ T be a chain. We show that ∪T∈T ∗T is an upper bound of T ∗ in T
by establishing that this set is consistent. If not, by compactness, it has a finite
inconsistent subset U . By finiteness, U ⊆ T for some T ∈ T ∗, which contradicts
monotonicity.

From Claim 1 and Zorn’s Lemma, T has a maximal element; call it T .

Claim 2. T contains a member of each pair ϕ,¬ϕ ∈ L.

If not, there is ϕ ∈ L such that ϕ,¬ϕ �∈ T . Then, by one-step completability,
either T ∪ {ϕ} or T ∪ {¬ϕ} is consistent. This contradicts the maximality of T . �

This proof follows the style of existing ones to establish Lindenbaum’s Lemma, a
basic result in logic (see, e.g., Chiang and Keisler [1, p. 10]).

With inconsistency defined as the primitive notion, logical entailment becomes a
derivative one. Formally, entailment is a binary relation ⊢ holding between sets S ⊆
L and formulas ϕ ∈ L and given by:

(*) S ⊢ ϕ if and only if S ∪ {¬ϕ} ∈ I.

In the sequel, ‘ψ ⊢ ϕ’ is short for ‘{ψ} ⊢ ϕ’.

By analogy with (I1)-(I6), the following conditions can be devised on logical en-
tailment:

(E1) There is no ϕ ∈ L such that ∅ ⊢ ϕ and ∅ ⊢ ¬ϕ (non-triviality).

(E2) For all ϕ ∈ L, ϕ ⊢ ϕ (reflexivity).

(E3) For all S ⊆ L and all ϕ, ψ ∈ L, if S �⊢ ψ, then S ∪ {ϕ} �⊢ ψ or S ∪ {¬ϕ} �⊢ ψ
(one-step completability).

(E4) For all S ⊆ S′ ⊆ L and all ϕ ∈ L, if S ⊢ ϕ, then S′ ⊢ ϕ (monotonicity).

(E5) For all S ⊆ L and all ϕ ∈ L, if S ⊢ ϕ, there is a finite subset S0 ⊆ S such
that S0 ⊢ ϕ (compactness).

Here is another condition on ⊢, which has no previous analogue on the side of I:

(E6) For all S ⊆ L, if there is a ϕ ∈ L such that S ⊢ ϕ and S ⊢ ¬ϕ, then for all
ϕ ∈ L, S ⊢ ϕ (non-paraconsistency).

As a matter of definition, the paraconsistent logics are those which do not satisfy (E6).
What they accomplish in effect is to weaken the ordinary notion of a contradiction;
this is further explained below.

Proposition 2 If I satisfies (I1)-(I5) and ⊢ is defined by (*), then ⊢ satisfies (E1)-
(E6).
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Sketch of the proof. (E1) derives from (I1), (I3) and (*); (E2) from (L2) and (*);
(E3) from (I3) and (*); (E4) from (I4) and (*); and (E5) from (I4), (I5) and (*). As
to (E6), suppose that there is ψ such that S ⊢ ψ and S ⊢ ¬ψ. From (*), S∪{¬ψ} ∈ I
and S ∪ {¬¬ψ} ∈ I, so that S ∈ I by (I3). For any ϕ, (I4) implies that S ∪ {¬ϕ}
∈ I, hence that S ⊢ ϕ by another application of (*). �

To present framework is reversible, i.e., one can take ⊢ to be the primitive notion,
and I to be the derivative one. Prima facie, there are (at least) two plausible ways
to define I in terms of ⊢:

(**) S ∈ I if and only if for all ϕ ∈ L, S ⊢ ϕ,

(***) S ∈ I if and only if there is ϕ ∈ L such that S ⊢ ϕ and S ⊢ ¬ϕ,

and either way has its problems. The former may be too weak in the right to left
direction of the proposed equivalence, whereas the latter may be too weak in the
left to right direction; this suggests that neither might be sufficiently assertive. We
by-pass this problem by assuming (E6), i.e., non-paraconsistency, which ensures that
(**) and (***) can be used interchangeably to characterize I.

Proposition 3 If ⊢ satisfies (E1)-(E6) and I is defined by (**) or, equivalently,
(***), then I satisfies (I1)-(I5).

Sketch of the proof. (I1) derives from (E1) and (***); (I2) from (E2), (E4) and
(***); (I3) from (E3) and (**); (I4) and (I5) from (E4) and (E5), respectively, and
either (**) or (***). By (E6), both definitions can be used. �

Moreover, uniqueness holds in the following sense: the inconsistent sets con-
structed from an entailment relation lead back to the same relation, and the other
way round. This is what makes the order of priority indifferent. Formally:

Proposition 4 (a) If ⊢ is defined from I in the first place, with I satisfying (I3)
and (I4), and I ′ is defined from the obtained ⊢, then I = I ′.

(b) If I is defined from ⊢ in the first place, with ⊢ satisfying (E2), (E3), (E4) and
(E6), and ⊢′ is defined from the obtained I, then ⊢ = ⊢′.

Proof. (a) Starting from I satisfying (I3) and (I4), we define ⊢ by (*). To define
I ′, we can choose either (**) or (***), given that (E6) obtains on ⊢, and we take the
former. Now, suppose S ∈ I. Then, (I4) entails that for all ϕ, S ∪ {¬ϕ} ∈ I, and (*)
that for all ϕ, S ⊢ ϕ, which leads to S ∈ I ′ by (**). Conversely, suppose S ∈ I ′ and
apply (**). Then, for all ϕ, S ⊢ ϕ and S ⊢ ¬ϕ, whence by (*) for all ϕ, S ∪{¬ϕ} ∈ I
and S ∪ {¬¬ϕ} ∈ I, and S ∈ I follows by (I3).

(b) In the other direction, we start from ⊢ satisfying (E2), (E3), (E4) and (E6),
and having the choice between (**) or (***) to define I, we take the former. We
define ⊢′ by (*). Now, suppose S ⊢ ϕ; then, from (E4), S ∪{¬ϕ} ⊢ ϕ, and since (E2)
and (E4) entail that S ∪{¬ϕ} ⊢ ¬ϕ, (E6) can be invoked to get S ∪{¬ϕ} ∈ I, hence
S ⊢′ ϕ from (*). Conversely, suppose S ⊢′ ϕ and apply (*) to get S ∪ {¬ϕ} ∈ I. By
(**), S ∪ {¬ϕ} ⊢ ϕ. Since S ∪ {ϕ} ⊢ ϕ holds because of (E2) and (E4), S ⊢ ϕ holds
because of (E3). �
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Carefully note the role of (E6) in the second half of this proof. By assuming it, we
reject the paraconsistent claim that a set - in this paper, a belief set - can be weakly
inconsistent, in the sense of entailing one contradiction, without at the same time
being strongly inconsistent, in the sense of entailing any contradiction (see Priest et
al. [32] and Priest [31]). The very existence of paraconsistent logics is proof that
this rejection is necessary, as well as sufficient, to obtain a fully reversible framework.
Indeed, starting from a paraconsistent ⊢, definitions (**) and (***) (or plausible
alternatives) lead to one’s violating the recovery equation ⊢ = ⊢′ of Proposition 4.

The proofs given in the next section tacitly assume either of the two systems (I1)-
(I5), plus (*), or (E1)-(E6), plus (**) or (***), also tacitly exploiting their proven
equivalence. An exception to this rule of silence is made for (I5) and (E5), i.e.,
compactness, which the present groundwork has shown to be detachable from the
remaining conditions. Its major role is to prove Proposition 1, which we will apply
without saying when we extend consistent sets of formulas in X to judgment sets in
the D∗- or D-sense, but it also occurs in Lemmas 3, 7, 8 and 9, and these applications
will be mentioned.17

8 Proof of the lemmas

Notation. When a profile (Ai)i∈N is given, we often write A instead of F ((Ai)i∈N),
and for p ∈ P , Np instead of {i ∈ N : p ∈ Ai} . For Z ⊆ X, we denote {¬p : p ∈ Z}by
¬Z.

Proof of Lemma 1. Associate with the social judgment function F : DN → 2X

and possibly with p ∈ P the following sets of coalitions:

Dp =
{

C ⊆ N : ∃(Ai)i∈N ∈ DN , {i : p ∈ Ai} = C & p ∈ F ((Ai)i∈N)
}

,

Dp =
{

C ⊆ N : ∀(Ai)i∈N ∈ DN , {i : p ∈ Ai} = C ⇒ p ∈ F ((Ai)i∈N)
}

,

and

D =
{

C ⊆ N : ∀p ∈ P,∀(Ai)i∈N ∈ DN , {i : p ∈ Ai} = C ⇒ p ∈ F ((Ai)i∈N )
}

.

Clearly, D ⊆ Dp ⊆ Dp. It is easy to see that F is independent on P if and only if
Dp = Dp. Now, if this equality holds, Dp satisfies condition (∗) of the text. Hence, if
F is independent on P , there exists Cp generating F on p. The converse implication
is trivial. By the same token, F is systematic on P if and only if D = Dp for all
p ∈ P . But if these equalities hold, condition (∗) holds for the same set regardless of
p. Hence, if F is systematic on P , there exists CF generating F on P . The converse
is trivial. �

Proof of Lemma 2. Left to the reader.

Proof of Lemma 3. Let (b) hold. We first derive a consequence of (b), and then
proceed to the proof itself.

17Compactness has the effect of excluding some otherwise perfectly well-behaved logics, such as
the probabilistic logics (see Heifetz and Mongin [15]) and some, but not all, of the logics of common
belief and common knowledge (for a discussion, see Lismont and Mongin [19]).
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Claim. There is a minimal inconsistent set Y ⊆ X and distinct premises p, q ∈
Y ∩ P such that Y¬{p,q} is consistent.

By (b), there is at least one pair (Y, Z) of a minimal inconsistent set Y ⊆ X and
an even-sized set of premisses Z ⊆ Y ∩ P such that Y¬Z is consistent. Among these
pairs, choose one (Y, Z) such that Z has smallest size. If |Z| = 2, we are done. Thus,
we assume that |Z| > 2.

Choose any distinct p, q ∈ Z. By the minimality condition in the choice of Y and
Z, the set Y¬{p,q} is inconsistent. In fact, it is minimal inconsistent, by the following
argument (made in a different framework by Dokow and Holzman [12]). There is
a minimal inconsistent subset W ⊆ Y¬{p,q} by compactness, and we want to show
that W = Y¬{p,q}. Both ¬p and ¬q are in W as otherwise W would be included
in the consistent sets Y¬{q} and Y¬{p}. The set W¬{¬p,¬q} is inconsistent by the
minimality condition on the choice of Y and Z. As this inconsistent set (= {p, q, ...})
is included in the minimal inconsistent set Y , it follows that Y = W¬{¬p,¬q}, hence
that Y¬{p,q} = W , as desired.

Now, in the minimal inconsistent set Y¬{p,q}, negate the members of Z\{p, q};
this leads to Y¬Z , a consistent set by the choice of Y, Z. But this contradicts the
minimality condition in this choice, because Z\{p, q} ⊆ Y¬{p,q} ∩P is even-sized and
has smaller cardinality than Z.

Main proof . Let F be as specified. Let Y, p, q be as in the above claim. We
consider any C ⊆ C∗ ⊆ N with C ∈ C and show that C∗ ∈ C. Now, by Lemma 1, it
is enough for the proof to select a particular (Ai)i∈N ∈ DN and a particular r ∈ P
s.t.

C = Nr and r ∈ A.

We extend the consistent sets Y¬{p}, Y¬{q} and Y¬{p,q} to JS in D, resp. AY¬{p} , AY¬{q}
and AY¬{p,q} , and consider the profile (Ai)i∈N ∈ DN defined by

Ai =






AY¬{p} if i ∈ C

AY¬{p,q} if i ∈ C∗\C

AY¬{q} if i ∈ N\C∗.

Now, A contains q since Nq = C ∈ C, and all ϕ ∈ Y \{p, q}, since Nϕ = N ∈ C by
Lemma 2. So Y \{p} ⊆ A. The inconsistency of Y ensures that Y \{p} ⊢ ¬p, whence
¬p ∈ A by the assumption that A ∈ D∗. So {i : ¬p ∈ Ai} ∈ C, which implies that
C∗ ∈ C as desired. �

Proof of Lemma 4. Assume (a) and (b). Take F as specified, the associated C,
and any C, C∗ ∈ C. Take Y ⊆ X as in (a). There are at least three pairwise distinct
formulas p, q, r ∈ Y ∩ P , and the sets Y¬{p}, Y¬{q} and Y¬{r} are consistent by the

minimal inconsistency of Y . Hence, there is (Ai)i∈N ∈ DN as follows:

- for all i ∈ C ∩C∗, Ai extends Y¬{p},

- for all i ∈ C∗\C, Ai extends Y¬{r},

- for all i ∈ N\C∗, Ai extends Y¬{q}.

Unanimity Preservation ensures that Y \{p, q, r} ⊆ A. Further, q ∈ A because
Nq = (C ∩ C∗) ∪ (C∗\C) = C∗ ∈ C, and r ∈ A because Nr = (C ∩ C∗) ∪ (N\C∗) ⊇
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C ∈ C and C is superset-closed by Lemma 3. Thus, Y \{p} ⊆ A, and ¬p ∈ A since Y
is inconsistent and A ∈ D∗. This is sufficient for the conclusion that C ∩ C∗ ∈ C, as
was to be proved. �

Proof of Lemma 5. Assume (a) and (b). Take F as specified and the associated C.
From Lemma 2, C does not contain ∅, and from Lemmas 3 and 4, C is superset- and
intersection-closed. Hence C is a filter. If moreover F : DN → D, Lemma 2 implies
the stronger conclusion that C is an ultrafilter. As is well-known, if N is finite, every
filter is the set of supersets of some M ⊆ N , and every ultrafilter the set of supersets
of {i} for some i ∈ N ; so that F is either an oligarchy or a dictatorship, respectively.
�

Proof of Lemma 6. For F as specified, consider p, q ∈ P and the associated Cp,Cq.
Take p ⊢∗ q, and let C ∈ Cp. By definition of ⊢∗, there is Y ⊆ X s.t. Y ∪{p} and
Y ∪ {¬q} are consistent, and Y ∪ {p,¬q} is inconsistent. As the last claim implies,
Y ∪{p, q} and Y ∪{¬p,¬q} are consistent, and there exists (Ai)i∈N ∈ DN as follows:

- for all i ∈ C, Ai extends Y ∪ {p, q},

- for all i /∈ C, Ai extends Y ∪ {¬p,¬q}.

With this profile, Y ⊆ A by Unanimity Preservation, and p ∈ A because {i : p ∈
Ai} ∈ Cp. So q ∈ A since A ∈ D∗. By Nq = C and q ∈ A, we have that C ∈ Cq, as
was to be proved.

Suppose now that (c) holds. Then, for all p, q ∈ P , the sequence of conditional
entailments p ⊢∗ p2, ..., pk−1 ⊢

∗ q made available by this condition leads to a corre-
sponding sequence of inclusions Cp ⊆ Cp2 , ..., Cpk−1 ⊆ Cq, and then to Cp = Cq, so that
by Lemma 1, F is systematic on P. �

Proof of Lemma 7. Let |N | ≥ 3, and let (a) be violated. Then there is an odd-sized
coalition M ⊆ N with |M | �= 1. For any (Ai)i∈N ∈ DN , we define the set

B = (∩i∈NAi) ∪ {p ∈ P : |{i ∈ M : p ∈ Ai}| > |M | /2}.

(In words, B collects all formulas unanimously accepted and all premisses accepted
by a majority within M .) We will show that B is consistent. If not, by compactness,
B has a finite minimal inconsistent subset Y ⊆ B. As (a) does not hold, |Y ∩ P | ≤ 2,
hence |Y ∩ P | = 2 since X contains no contradictions. Say Y ∩ P = {p, q}. Within
M , a majority accepts p, and a majority accepts q. As two majorities must overlap,
there is an j ∈ M s.t. {p, q} ⊆ Aj . So Y ∩ P ⊆ Aj . Hence, as also Y \P ⊆ Aj,
Y ⊆ Aj. So Ai is inconsistent, a contradiction.

Having just shown that B is consistent, B can be extended to a set in D; let
F ((Ai)i∈N) be one such extension. Note that, as B is already complete w.r.t. P ,

F ((Ai)i∈N) ∩ P = B ∩ P = {p ∈ P : |{i ∈ M : p ∈ Ai}| > |M | /2}.

So we have defined a social judgment function F : DN → D that is generated on
P by C = {C ⊆ M : |C| > |M | /2}. Lemma 1 implies that F is systematic. Also,
F is unanimity-preserving by construction. And C is not a filter, because C is not
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intersection-closed (take, e.g., two majorities of |M|+1
2

individuals that intersect on a
singleton). �

Proof of Lemma 8. Let |N | ≥ 3; so N contains three distinct individuals, to be
labelled 1,2,3. Let (b) be violated. For any (Ai)i∈N ∈ DN , we define B = B1 ∪ B2,
where

B1 = A1 ∩A2 ∩A3

and
B2 = {p ∈ P : p is in exactly one of A1, A2, A3}.

We prove that B is consistent. Suppose not, then by compactness there is a finite
minimal inconsistent subset Y ⊆ B. Define Y ∗ = Y ∩ P and A∗i = Ai ∩ P for all
i ∈ N . We have Y ∗ �= ∅, as otherwise Y ⊆ B1 ⊆ A1, an impossibility since Y is
inconsistent and A1 is consistent. Now, Y ∗ can be expressed as the pairwise disjoint
union of the following sets:

Z0 = Y ∗ ∩A∗1 ∩A∗2 ∩A∗3, Z1 = Y ∗ ∩ [A∗1\(A
∗
2 ∪A∗3)] ,

Z2 = Y ∗ ∩ [A∗2\(A
∗
1 ∪A∗3)] , Z3 = Y ∗ ∩ [A∗3\(A

∗
1 ∪A∗2)] .

There must exist two sets among Z1, Z2, Z3, say w.l.g. Z1, Z2, such that |Z1 ∪ Z2|
is even and Z1 ∪ Z2 �= ∅. (The first claim is simply combinatorial, and the second
one follows by contradiction from the consistency of A3, since Z1 ∪ Z2 = ∅ leads to
Y ∗ ⊆ A3, hence to Y ⊆ A3.) Put Z = Z1 ∪ Z2. Since (b) does not hold, we will have
derived a contradiction if we show that

Y¬Z = (Y \Z) ∪ ¬Z

is consistent. Now, Y¬Z can be obtained as the union

Y = (Y \Y ∗) ∪ (Y ∗\Z) ∪ ¬Z,

where (i) Y \Y ∗ ⊆ B1 ⊆ A3, (ii) Y ∗\Z = Y ∗∩A∗3 ⊆ A∗3, and (iii) ¬Z = {¬p : p ∈ Y ∗, p /∈ A∗3} ⊆
{¬p : p ∈ P, p /∈ A∗3} = A∗3. The last equality holds as A∗3 = A3 ∩ P contains exactly
one member of each pair p,¬p ∈ P . Putting (i), (ii) and (iii) together, we see that
Y¬Z ⊆ A3, hence that Y¬Z is consistent, as we aimed at proving.

Having shown B to be consistent, we can extend B to a set in D; this set is our
F ((Ai)i∈N). Note that, as B is already complete w.r.t. P ,

F ((Ai)i∈N) ∩ P = B ∩ P = {p ∈ P : |Np| is odd}.

So the just-defined social judgment function F : DN  → D is generated on P by

CF = {C ⊆ N : |C ∩ {1, 2, 3}| is odd}.

Hence, F is systematic on P from Lemma 1; it is also unanimity-preserving since
∩i∈NAi ⊆ B1 ⊆ F ((Ai)i∈N). But CF is not a filter, as it is not superset-closed. �

Proof of Lemma 9. Let (c) be violated. As |N | ≥ 2, N contains distinct indi-
viduals, to be labelled 1 and 2. For p, q ∈ P , define pRq if there is a sequence of
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conditional entailments from p to q as in the statement of (c). As (c) does not hold,
there are p̄, q̄ ∈ P such that not p̄Rq̄, and P can be partitioned into two non-empty
sets

S1 = {p ∈ P : p̄Rp} and S2 = {p ∈ P : not p̄Rp}.

Note that
p �⊢∗ q for all p ∈ S1 and all q ∈ S2. (1)

We can further partition S1 into the sets

S11 = {p ∈ S1 : ¬p ∈ S1} and S12 = {p ∈ S1 : ¬p ∈ S2},

and similarly, S2 into the sets

S21 = {p ∈ S2 : ¬p ∈ S1} and S22 = {p ∈ S2 : ¬p ∈ S2}.

Now, consider any (Ai)i∈N ∈ DN . We first define B ⊆ P as follows: for all p ∈ P ,

p ∈ B ⇔






p ∈ A1 if p ∈ S11
p ∈ A2 if p ∈ S22
p ∈ A1 ∪A2 if p ∈ S12
p ∈ A1 ∩A2 if p ∈ S21.

We set out to prove that B ∪ (A1 ∩A2) is a consistent set. Suppose not; then by
compactness, there is a minimal inconsistent subset Y ⊆ B ∪ (A1 ∩A2). Hence,

p ⊢∗ ¬q for all distinct p, q ∈ Y. (2)

We will prove six claims relative to Y ∗ = Y ∩B, leading eventually to a contradiction.

(i) Y ∗ �⊆ S11 ∪ S21. If not, the definition of B implies that Y ∗ ⊆ A1, and Y ⊆ A1,
a consistent set.

(ii) Y ∗ �⊆ S22 ∪ S21 by a similar argument.
(iii) Y ∗∩S12 �= ∅. If not, Y ∗ ⊆ S11∪S22∪S21, and by (i) and (ii), there are p, q ∈ Y ∗

with p ∈ S11 and q ∈ S22, hence also ¬q ∈ S22. By (2), p ⊢∗ ¬q, contradicting
(1).

(iv) Y ∗ ∩ S12 = {r}. If there were r, s ∈ Y ∗ ∩ S12, r �= s, (2) would imply that
s ⊢∗ ¬r, in contradiction with (1).

(v) Y ∗ ∩ S11 = ∅. If not, by (2) p ⊢∗ ¬r, contradicting (1).
(vi) Y ∗ ∩ S22 = ∅ by a similar argument.

From (iv), (v) and (vi), Y ∗ ⊆ {r} ∪ S21 ⊆ {r} ∪ (A1 ∩ A2), where the second
inclusion follows from the definition of B. Since Y ⊆ Y ∗ ∪ (A1 ∩ A2), it also holds
that Y ⊆ {r}∪ (A1 ∩A2). The definition of B implies that r ∈ A1 or r ∈ A2, whence
either Y ⊆ A1 or Y ⊆ A2, a contradiction with the consistency of A1 and A2.

For all (Ai)i∈N ∈ DN , one can extend the consistent set B ∪ (A1 ∩ A2) to one
in D, so as to define a social judgment function F : DN → D. As B was already
complete w.r.t. P , we have F ((Ai)i∈N )∩P = B ∩P for all (Ai)i∈N ∈ DN . It follows
that, for every p ∈ P , F is generated on p by some Cp, hence by Lemma 1 that F is
independent on P . F is unanimity-preserving since ∩i∈NAi ⊆ A1 ∩A2 ⊆ A. Finally,
Cp is not the same for all p ∈ P , because S1 and S2 are each non-empty, and if p ∈ S1
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then Cp is {C ⊆ N : 1 ∈ C} or 2N\{∅}, whereas if p ∈ S2 then Cp is {C ⊆ N : 2 ∈ C}
or {N}. �

Proof of Lemma 10. Let N be finite. Suppose (d) holds and F : DN → D is a
dictatorship on P . Let j be the dictator on P . Let G : DN → D be dictatorship
on X by individual j. To show that F = G, we consider any (Ai)i∈N ∈ DN and
show that F ((Ai)i∈N) = G((Ai)i∈N ). As F ((Ai)i∈N) and G((Ai)i∈N) and each in D,
it suffices to show that F ((Ai)i∈N) ⊆ G((Ai)i∈N ). Consider any ϕ ∈ F ((Ai)i∈N).
Let S := F ((Ai)i∈N ) ∩ P . By (d), either S ⊢ ϕ or S ⊢ ¬ϕ. It cannot be that
S ⊢ ¬ϕ, since otherwise F ((Ai)i∈N) would contain ¬ϕ by deductive closure, hence
be inconsistent. So S ⊢ ϕ. By definition of G, G((Ai)i∈N) ∩ P = F ((Ai)i∈N) ∩ P ,
whence G((Ai)i∈N) ∩ P = S. So also G((Ai)i∈N) entails ϕ. Hence, as G((Ai)i∈N) is
deductively closed, ϕ ∈ G((Ai)i∈N ), as desired. �

Proof of Lemma 11. If (d) is violated, there is a set S that is complete w.r.t. P
and s.t. for some ϕ ∈ X\P , both S ∪ {ϕ} and S ∪ {¬ϕ} are consistent. These two
sets can be extended, so that there are B, B′ ∈ D with B ∩P = B′ ∩P , but B �= B′.
Let 1 be any individual in N , and let F : DN → D be defined by the condition that
for all (Ai)i∈N ∈ DN ,

A =

{
B if A1 = B′ and Ai = B for all i ∈ N\{1}
A1 otherwise.

This F is not dictatorial, and unanimity-preserving; and because 1 is a dictator on
P it is also systematic, hence independent, on P . �
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