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Abstract

This paper characterizes several belief-revision rules in a uni�ed framework: Bayesian
revision upon learning some event, Je¤rey revision upon learning new probabilities of
some events, Adams revision upon learning some new conditional probabilities, and
�dual-Je¤rey�revision upon learning a new conditional probability function. Despite
their di¤erences, these revision rules can be characterized in terms of the same two
axioms: responsiveness, which requires that revised beliefs incorporate what has been
learnt, and conservativeness, which requires that beliefs on which the learnt input is
�silent�do not change. So, the four revision rules apply the same principles, albeit
to di¤erent learnt inputs. To illustrate that there is room for non-Bayesian belief
revision in economic theory, we also sketch a simple decision-theoretic application.

Keywords: Subjective probability, Bayes�s rule, Je¤rey�s rule, axiomatic foundations,
�ne-grained versus coarse-grained beliefs, unawareness

1 Introduction

A belief-revision rule captures how an agent�s subjective probabilities should change
when the agent learns something new. The standard example is Bayes�s rule. Here,
the agent learns that some event has occurred, and the response is to raise the sub-
jective probability of that event to 1, while retaining all probabilities conditional on
it. More formally, let 
 be the underlying set of possible worlds (where 
 is non-
empty and, for simplicity, �nite or countably in�nite).2 Subsets of 
 are called events.
Beliefs are represented by some probability measure on the set of all events. Bayes�s
rule says that, upon learning that some event B � 
 has occurred (with p(B) 6= 0),
one should move from the prior probability measure p to the posterior probability
measure p0 given by

p0(A) = p(AjB) for all events A � 
.

In economic theory, belief changes are almost always modelled in this way. The
aim of this paper is to draw attention to some alternative, non-Bayesian belief-revision

1F. Dietrich, Paris School of Economics (CNRS) and University of East Anglia; C. List, LSE; R.
Bradley, LSE. We have presented this paper at several seminars and conferences and are grateful to
the audiences for helpful comments. These occasions include: D-TEA 2010 (HEC & Polytechnique,
Paris, June 2010), LSE�s Choice Group Seminar (LSE, September 2010), Pluralism in the Foundations
of Statistics (University of Kent, September 2010), and Decisions, Games, and Logic 2012 (University
of Munich, June 2012). Although this paper presents a jointly authored project, Christian List and
Richard Bradley wish to note that the bulk of the mathematical credit should go to Franz Dietrich.

2Everything we say could be generalized to an arbitrary measurable set 
.
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rules, which are seldom discussed in economics. We show that Bayes�s rule is just one
special case of a larger family of rules, which can all be axiomatically characterized
in a uni�ed way. They di¤er only in what they assume about the nature of the input
prompting the agent�s belief change. Under Bayes�s rule, the learnt input is always
the occurrence of some event, but this is more restrictive than often recognized.

To illustrate, we begin with a story that Kotaro Suzumura has kindly shared
with us. It is about how Suzumura was o¤ered his �rst faculty position at a British
university. He was at the time a British Council Visiting Scholar in Cambridge and
had been encouraged by his supervisor, Frank Hahn, to apply for a lectureship at the
LSE. After being interviewed for the position, he was telephoned by Terence Gorman
to inform him of the outcome. As Suzumura tells the story, Gorman had a very
thick accent which, combined with the fact that Suzumura was not a native English
speaker and that the conversation was over the telephone, meant that he had great
di¢ culty understanding Gorman. He got the impression that he was being o¤ered
the post, but was naturally reluctant to insist on greater clarity. At the end of the
conversation, he was still far from sure that he had received an o¤er �so unsure that
he felt compelled to telephone Amartya Sen, who was then at the LSE, to ask whether
it was true. Fortunately, Sen was able to con�rm that it was, and Suzumura could
accept the o¤er. The rest, as they say, is history.

This story illustrates an instance of belief revision triggered by a noisy signal.
Such cases present challenges to the Bayesian modeller. Before the telephone conver-
sation, Suzumura presumably attached a fairly low probability to the event of him
being appointed to the lectureship. After the conversation, he attached a somewhat
higher probability to it, but one that still fell short of certainty. For this, a second
conversation (with Sen) was needed. If the �rst change in Suzumura�s probabilities
is to be modelled as an application of Bayes�s rule, then it will clearly not su¢ ce to
restrict attention to the �naïve�set of possible worlds 
 = fappointed, not appointedg.
Relative to that �naïve�set, a Bayesian belief change could never increase the prob-
ability of the event �appointed�without raising it all the way to 1.

The modeller will need to enrich the set 
 to capture the possible sensory experi-
ences responsible for Suzumura�s shift in probabilities over the events �appointed�and
�not appointed�. So, the enriched set of worlds will have to be something like


0 = fappointed, not appointedg � A;

where A is the set of possible analogue auditory signals received by Suzumura�s
eardrums. The signal he received from Gorman will then correspond to some subset
of 
0, speci�cally one of the form B = fappointed, not appointedg�A, where A � A
is a particular �auditory event�. Not much less than this representation will do. Even
replacing A with a smaller set of possible verbal messages would not su¢ ce, since
Gorman�s words were subject to a triple distortion, �rst by his thick accent, then by
imperfections of the telephone line, and �nally by the interpretation of someone new
to an English-speaking environment.

Enriching the set 
 in this way, however, has de�nite modelling costs. First, the
agent (Suzumura) almost certainly did not have prior subjective probabilities over
the events from such a rich set. In light of the huge range of possible signals, the set

0 is of dizzying size and complexity, when compared to the �naïve�set 
 on which
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the agent�s attention was originally focused. Second, it is doubtful that before the
conversation he was even aware of the possibility of such complex auditory signals
(probably he had never heard, or even heard of, an accent like Gorman�s). So, a
Bayesian model of Suzumura�s story, and others like it, must inevitably involve a
heavy dose of �ction. It ascribes to the agent greater prior opinionation (ability to
assign prior probabilities) and greater awareness (conceptualization or consideration
of events) than psychologically plausible. In a similar vein, Diaconis and Zabell (1982,
p. 823) have called the assignment of prior subjective probabilities to �many classes
of sensory experiences [...] forced, unrealistic, or impossible� (see also Je¤rey 1957
and Shafer 1981). Of course, whether this is a problem or not will depend on the
uses to which the model is put; we are not denying the usefulness of �as-if�modelling
in all cases. But good scienti�c practice should encourage us to investigate whether
other belief-revision rules are better at capturing cases like the present one and how
these other rules relate to Bayes�s rule. This is what motivates this paper.

A prominent generalization of Bayes�s rule is Je¤rey�s rule (e.g., Je¤rey 1957,
Shafer 1981, Diaconis and Zabell 1982, Grünwald and Halpern 2003). Here, the
agent learns a new probability of some event, for instance a 20% probability of an
accident or a 75% probability of the o¤er of a lectureship, as perhaps in Suzumura�s
case. More generally, the agent learns a new probability distribution of some random
variable such as the level of rainfall or GDP. The response, then, is to assign the
new distribution to that random variable, while retaining all probabilities conditional
on it. More formally, let B be a partition of the set 
 into �nitely many non-
empty events, and suppose the agent learns a new probability �B for each event B
in B. The family of learnt probabilities, (�B)B2B, is a probability distribution over
B (i.e., consists of non-negative numbers with sum-total 1). Je¤rey�s rule says that,
upon learning (�B)B2B, one should move from the prior probability measure p to the
posterior probability measure p0 given by

p0(A) =
X
B2B

p(AjB)�B for all events A � 
:3

For instance, suppose the agent learns that it will rain with probability 1
2 , snow

with probability 1
3 , and remain dry with probability

1
6 . Then the partition B (of a

suitable set 
) contains the events of rain (R), snow (S), and no precipitation (N),
where �R = 1

2 , �S =
1
3 , and �N = 1

6 . Bayes�s rule is the special case where B
partitions 
 into an event B and its complement B, with �B = 1 and �B = 0. (The
complement of any event B is B = 
nB.)

We develop a general framework in which di¤erent belief-revision rules can be
de�ned and compared. In this framework, what is being learnt by the agent can take
a variety of forms; we call this the learnt input. It can be interpreted as the constraint
that a particular experience �say the receipt of some signal �imposes on the agent�s
beliefs. Examples of learnt inputs are event occurrences for Bayes�s rule and learnt
probability distributions for Je¤rey�s. We show that four salient belief-revision rules
�Bayes�s rule, Je¤rey�s rule, and two others introduced below (Adams�s rule and the

3For p0 to be well-de�ned, we must have �B = 0 whenever p(B) = 0. This ensures that if a term
p(AjB) is unde�ned in the displayed formula (because p(B) = 0), then this term does not matter
(because it is multiplied by �B = 0).
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�dual-Je¤rey�rule) �can be uniquely characterized in terms of the same two axioms,
simply applied to di¤erent domains of learnt inputs.

Our axioms are (i) a responsiveness axiom, which requires that revised beliefs be
consistent with the learnt input, and (ii) a conservativeness axiom, which requires
that those beliefs on which the input is �silent�(in a sense to be made precise) do not
change. The fact that several non-standard belief-revision rules can be justi�ed in
complete analogy to Bayes�s rule should assuage some economists�worry that non-
Bayesian rules automatically involve costly departures from compelling principles of
belief revision. We hope that this will, in turn, inspire further work on economic ap-
plications and behavioural implications of non-Bayesian forms of belief revision. To
suggest some steps in this direction, we conclude the paper with a discussion of how
non-Bayesian belief revision may be introduced into decision and game theory, espe-
cially to capture �unforeseen learning�;we also brie�y revisit the issue of unawareness.4

Prior literature. Three of the four belief-revision rules we discuss �Bayes�s, Jef-
frey�s, and Adams�s rules �have been axiomatically characterized in previous work,
though in di¤erent ways. The approach has usually been a �distance-based�one. This
consists in showing that a given revision rule generates posterior beliefs that incor-
porate the information learnt, while deviating as little as possible from prior beliefs,
relative to some notion of �distance�between beliefs.5 Bayes�s and Je¤rey�s rules have
been characterized relative to either the variation distance (de�ned by the maximal
absolute di¤erence in probability, over all events in the algebra), the Hellinger dis-
tance, or the relative-entropy distance (e.g., Csiszar 1967, 1977, van Fraassen 1981,
Diaconis and Zabell 1982, Grünwald and Halpern 2003). The third notion of distance
does not de�ne a proper metric, as it is asymmetric in its two arguments. Douven
and Romeijn (2011) have recently characterized Adams�s rule by invoking yet an-
other measure of distance, the inverse relative-entropy distance (which di¤ers from
ordinary relative-entropy distance in the inverted order of its arguments). As elegant
as these characterizations may be, they give a non-uni�ed picture of belief revision.
Di¤erent notions of distance are invoked to justify di¤erent revision rules, and their
interpretation and relative advantages are controversial.

Another set of characterization results invokes the idea of �rigidity�rather than
distance-minimization (see Je¤rey 1957 for Bayes�s and Je¤rey�s rules, and Bradley
2005 for Adams�s). For example, Bayesian belief revision is �rigid� in the sense of
preserving the conditional probability of any event, given the learnt event. Although
the rigidity-based approach is closer in spirit to ours, it also lacks uni�cation. How-
ever, within our framework, one may interpret the conservativeness axiom as a more
uni�ed version of earlier rigidity axioms, applicable to any belief-revision rule. For
an overview of various forms of probabilistic belief and belief revision, we refer the
reader to Halpern�s handbook (2003). Since we here deal exclusively with beliefs that
are represented by subjective probability measures, we set aside the literature on the
revision of beliefs that do not take this form.

4For a brief discussion of dynamic-consistency arguments for Je¤rey�s rule, similar to classic
dynamic-consistency arguments for Bayes�s rule, see Vineberg (2011).

5Distance is represented by a function d : P�P ! R, where P is the set of all probability measures
over the events from 
 and d(p; p0) is interpreted as the distance between two such measures, p; p0 2 P.
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2 A general framework

We can study attitude revision in general by specifying

(i) a set P of possible attitudinal states in which a given agent can be, and

(ii) a set I of possible inputs which can in�uence the agent�s attitudinal state.

A revision rule maps pairs (p; I) of an initial attitudinal state p in P and an input I
in I to a new attitudinal state p0 = pI in P. The pair (p; I) belongs to some domain
D � P � I containing those attitude-input pairs that are admissible under the given
revision rule. A revision rule is thus a function from D to P (see also Dietrich 2012).

Since we focus on belief revision, attitudinal states are subjective probability
measures. So, the set P of possible attitudinal states is the set of all probability
measures over the events from 
. Formally, a probability measure is a countably
additive function p : 2
 ! [0; 1] with p(
) = 1 (where 
 is the underlying �nite
or countably in�nite set of worlds). We call any p in P a belief state. How can we
de�ne the set I of possible inputs? Looking at Bayes�s rule alone, one might be
tempted to de�ne them as observed events B � 
. But Je¤rey�s rule and the other
rules introduced below permit di¤erent inputs, such as a family (�B)B2B of learnt
probabilities in Je¤rey�s case.

Methodologically, one should not tie the notion of a �learnt input�too closely to
one particular revision rule, by de�ning it as a mathematical object that is tailor-made
for that rule. This would exclude other revision rules from the outset and thereby
prevent us from giving a fully compelling axiomatic characterization of the rule in
question. Instead, we need an abstract notion of a �learnt input�.

We de�ne a learnt input as a set of belief states I � P, interpreted as the set
of those belief states that are consistent with the input. We can think of the input
I as the constraint that a particular experience, such as the receipt of some signal,
imposes on the agent�s belief state. The set of logically possible inputs is I = 2P .
Note that this is deliberately general. An agent�s belief change from p to pI upon
learning I 2 I is responsive to the input if pI 2 I. We can now de�ne the inputs
involved in Bayesian revision and Je¤rey revision.

De�nition 1 A learnt input I 2 I is
� Bayesian if I = fp0 : p0(B) = 1g for some event B 6= ?; we then write I = IB;6
� Je¤ rey if I = fp0 : p0(B) = �B for all B 2 Bg for some probability distribution
(�B)B2B on some partition B; we then write I = I(�B)B2B .7

Here, and in what follows, we use the term partition to refer to a partition of 
 into
�nitely many non-empty events.

Clearly, every Bayesian input is also a Je¤rey input, while the converse is not
true. Later, we introduce the notions of Adams inputs and dual-Je¤rey inputs. Some

6The representation I = IB is unique, because for any Bayesian input I, there exists a unique
event B such that I = IB .

7For any Je¤rey input I, the corresponding family (�B)B2B is essentially uniquely determined, in
the sense that the subpartition fB 2 B : �B 6= 0g and the corresponding subfamily (�B)B2B:�B 6=0 are
unique. The subpartition fB 2 B : �B = 0g is sometimes non-unique. Uniqueness can be achieved
by imposing the convention that jfB 2 B : �B = 0gj � 1.
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possible inputs I 2 I are of none of these kinds, such as I = fp0 : p0(A \ B) >
p0(A)p0(B)g, which captures the constraint that the events A and B are positively
correlated, or I = fp0 : p0(A) � 9=10g, which captures the constraint that A is very
probable. In general, the smaller the set I, the stronger (more constraining) the
input. The strongest consistent inputs are the singleton sets I = fp0g, which require
adopting the new belief state p0 regardless of the initial belief state. The weakest
input is the set I = P, which allows the agent to retain his old belief state.

We are now able to de�ne Bayes�s and Je¤rey�s rules in this framework.

De�nition 2
� Let DBayes be the set of all pairs (p; I) 2 P � I such that I = IB is a Bayesian
input compatible with p (which means p(B) 6= 0). Bayes�s rule is the revision
rule on DBayes which maps each (p; IB) 2 DBayes to p0 2 P, where

p0(A) = p(AjB) for all events A � 
: (1)

� Let DJe¤ rey be the set of all pairs (p; I) 2 P � I such that I = I(�B)B2B is a
Je¤rey input compatible with p (which means �B = 0 whenever p(B) = 0).
Je¤ rey�s rule is the revision rule on DJe¤ rey which maps each (p; I(�B)B2B) 2
DJe¤ rey to p0 2 P, where

p0(A) =
X
B2B

p(AjB)�B for all events A � 
: (2)

The domains DBayes and DJe¤rey are the maximal domains for which formulas (1)
and (2) are well-de�ned.8 Je¤rey�s rule extends Bayes�s, i.e., it coincides with Bayes�s
rule on the subdomain DBayes (� DJe¤rey). Later, we introduce two further revision
rules: Adams�s rule and the dual-Je¤rey rule.

3 An axiomatic characterization

We now introduce two plausible axioms that a belief-revision rule may be expected to
satisfy and show that they imply that the agent must revise his beliefs in accordance
with Bayes�s rule in response to any Bayesian input and in accordance with Je¤rey�s
rule in response to any Je¤rey input. Later, we extend that characterization to the
two other revision rules we have announced. All proofs are given in the Appendix.

3.1 Two axioms

Let D � P � I be the domain of the belief-revision rule. For each belief-input pair
(p; I) 2 D, we write pI 2 P to denote the revised belief state. Our �rst axiom says
that the revised belief state should be responsive to the learnt input.

Responsiveness: pI 2 I for all belief-input pairs (p; I) 2 D.
8The de�nition of each revision rule and its domain relies on the fact that each Bayesian input I

is uniquely representable as I = IB and that each Je¤rey input is �almost�uniquely representable as
I = I(�B)B2B , where any residual non-uniqueness makes no di¤erence to the revised belief state or
the criterion for including (p; I) in the domain. For details, see Lemmas 1 and 3 in the Appendix.
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Responsiveness guarantees that the agent�s revised belief state respects the constraint
given by the input. For example, in response to a Bayesian input, the agent assigns
probability one to the learnt event.

The second axiom expresses a natural conservativeness requirement: those �parts�
of the agent�s belief state on which the learnt input is �silent�should not change in
response to it. In short, the learnt input should have no e¤ect where it has nothing to
say. To de�ne that axiom formally, we must answer two questions: what do we mean
by �parts of a belief state�, and when is a given input �silent�on them? To answer
these questions, note that, intuitively:

� a Bayesian input is not silent on the probability of the learnt event B, but is
silent on all conditional probabilities, given B; and

� a Je¤rey input is not silent on the probabilities of the events in the relevant
partition B, but is silent on all conditional probabilities, given these events.

So, the �parts�of the agent�s belief state on which Bayesian inputs and Je¤rey
inputs are �silent� are conditional probabilities of some events, given others. The
relevant conditional probabilities are preserved by Bayes�s and Je¤rey�s rules, so that
these rules are intuitively conservative.

In the next subsection, we de�ne formally what it means for a learnt input to be
�silent�on the probability of one event, given another. Once we have this de�nition,
we can formulate our conservativeness axiom as follows.

Conservativeness (axiom scheme): For all belief-input pairs (p; I) 2 D, if I is
�silent�on the probability of a (relevant) event A given another B, this conditional
probability is preserved, i.e., pI(AjB) = p(AjB) (if pI(B); p(B) 6= 0).

3.2 When is a learnt input silent on the probability of one event,
given another?

Our aim is to de�ne when a learnt input I 2 I is �silent�on the probability of one
event A, given another event B (where possibly B = 
). Our analysis will be fully
general, i.e., not restricted to any particular class of inputs, such as Bayesian inputs
or Je¤rey inputs. We �rst note that we need to de�ne silence only for the case in
which

? ( A ( B � Supp(I);

where Supp(I) is the support of I, de�ned as f! 2 
 : p0(!) 6= 0 for some p0 2 Ig.9
There are two plausible notions of �silence�, which lead to two di¤erent variants

of our conservativeness axiom. We begin with the weaker notion. A learnt input is
weakly silent on the probability of A given B if it permits this conditional probability
to take any value. Formally:

De�nition 3 Input I 2 I is weakly silent on the probability of A given B (for
? ( A ( B � Supp(I)) if, for every value � in [0; 1], I contains some belief state p0
(with p0(B) 6= 0) such that p0(AjB) = �.

9Here, and elsewhere, we write p0(!) as an abbreviation for p0(f!g) when we refer to the probability
of a singleton event f!g.
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For instance, the learnt input I = fp0 : p0(B) = 1=2g is weakly silent on the
probability of A given B. So is the input I = fp0 : p0(A) � 1=2g. This weak notion
of silence gives rise to the following strong conservativeness axiom:

Strong Conservativeness: For all belief-input pairs (p; I) 2 D, if I is weakly silent
on the probability of an event A given another B (where ? ( A ( B � Supp(I)),
this conditional probability is preserved, i.e., pI(AjB) = p(AjB) (if pI(B); p(B) 6= 0).

Although this axiom may seem plausible, it leads to an impossibility result.

Proposition 1 If #
 � 3, no belief-revision rule on any domain D � DJe¤ rey is
responsive and strongly conservative.

Note that, on the small domain DBayes , there is no such impossibility, because
Bayes�s rule is responsive as well as strongly conservative. On that domain, the
present strong conservativeness axiom is equivalent to our later, weaker one. The im-
possibility occurs on domains on which the two conservativeness axioms come apart.

We weaken strong conservativeness by strengthening the notion of silence. The key
insight is that even if a learnt input I is weakly silent on the probability of A given B,
it may still implicitly constrain the relationship between this conditional probability
and others. Suppose, for instance, that 
 = f0; 1g2, where the �rst component of a
world (g; j) 2 
 represents whether Richard has gone out (g=1) or not (g=0), and the
second whether Richard is wearing a jacket (j=1) or not (j=0). Consider the event
that Richard has gone out, G = f(g; j) : g = 1g, and the event that he is wearing
a jacket, J = f(g; j) : j = 1g. Some inputs are weakly silent on the probability of
J (given 
) and yet require this probability to be related in certain ways to other
probability assignments, especially those conditional on J . Consider, for instance,
the Je¤rey input which says that G is 90% probable, formally I = fp0 : p0(G) = 0:9g.
It is compatible with any probability of J and is thus weakly silent on the probability
of J , given 
. But it requires this probability to be related in certain ways to the
probability of G, given J . If this conditional probability is 1 (which is compatible
with I), then the probability of J can no longer exceed 0.9. If it did, the probability
of G would exceed 0.9, which would contradict the learnt input I. In short, although
I does not directly constrain the agent�s subjective probability for J , it constrains it
indirectly, i.e., after other parts of the belief state have been �xed.

A learnt input is strongly silent on the probability of A given B if it permits this
conditional probability to take any value even after other parts of the agent�s belief
state have been �xed. Let us �rst explain this idea informally. What exactly are
the �other parts of the agent�s belief state�? They are those probability assignments
that are �orthogonal�to the probability of A given B. In other words, they are all
the beliefs of which the belief state p0 consists, over and above the probability of A
given B. More precisely, assuming again that A is included in B, they are given by
the quadruple consisting of the unconditional probability p0(B) and the conditional
probabilities p0(�jA), p0(�jBnA), and p0(�jB).10 This quadruple and the conditional

10This informal discussion assumes that p0(A); p0(BnC); p0(B) 6= 0.
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probability p0(AjB) jointly determine the belief state p0, because

p0 = p0(�jA) p0(A)| {z }
p0(AjB)p0(B)

+p0(�jBnA) p0(BnA)| {z }
p0(B)�p0(AjB)p0(B)

+p0(�jB) p0(B):| {z }
1�p0(B)

If an input I is strongly silent on the conditional probability of A given B, then this
probability can be chosen freely even after the other parts of the agent�s belief state
have been �xed in accordance with I (which requires them to match those of some
belief state p� in I). This idea is illustrated in Figure 1, where a learnt input I is

probability
of A given B

0 1

other parts of
the belief state

(a) no silence

I

0 1

(b) weak silence

I

probability
of A given B

0 1

(c) strong silence

I

probability
of A given Bα

p*

p’

α α

p*p’

other parts of
the belief state

other parts of
the belief state

Figure 1: An input�s weak or strong silence on some conditional probability

represented in the space whose horizontal coordinate represents the probability of
A given B and whose vertical) coordinate represents the other parts of the agent�s
belief state (collapsed into a single dimension for illustration). In part (a), input I
(represented by the circular region) is not silent at all on the probability of A given B,
since many values of this probability, such as �, are ruled out by I. In part (b), input
I (represented by the �oval�region) is weakly but not strongly silent on the probability
of A given B. This is because I is consistent with any value of that probability, but
to combine it with a particular value, such as �, other parts of the belief state can no
longer be freely chosen. In part (c), input I (represented by the rectangular region)
is strongly silent on the probability of A given B. It is consistent with any value of
that probability, even after other parts of the belief state have been �xed.

To de�ne strong silence formally, we say that two belief states p0 and p� coin-
cide outside the probability of A given B if the other parts of these belief states
coincide, i.e., if p0(B) = p�(B) and p0(�jC) = p�(�jC) for all C 2 fA;BnA;Bg such
that p0(C); p�(C) 6= 0. Clearly, two belief states that coincide both (i) outside the
probability of A given B and (ii) on the probability of A given B are identical.

De�nition 4 Input I 2 I is strongly silent on the probability of A given B
(for ? ( A ( B � Supp(I)) if, for all � 2 [0; 1] and all p� 2 I, the set I contains
some belief state p0 (with p0(B) 6= 0) which
(a) coincides with � on the probability of A given B, i.e., p0(AjB) = �,
(b) coincides with p� outside the probability of A given B (if p�(A); p�(BnA) 6= 0).
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In this de�nition, there is only one belief state p0 satisfying (a) and (b), given by

p0 := p�(�jA)�p�(B) + p�(�jBnA)(1� �)p�(B) + p�(� \B); (3)

so that the requirement that there exists some p0 in I satisfying (a) and (b) reduces
to the requirement that I contains the belief state (3).11

For example, the inputs I = fp0 : p0 is uniform on Bg and I = fp0 : p0(B) � 1=2g
are strongly silent on the probability of A given B, since this conditional probability
can take any value, independently of other parts of the agent�s belief state (e.g.,
independently of the probability of B). This strengthened notion of silence leads to
a weaker conservativeness axiom, which we call just �conservativeness�.

Conservativeness: For all belief-input pairs (p; I) 2 D, if I is strongly silent on
the probability of an event A given another B (for ? ( A ( B � Supp(I)), this
conditional probability is preserved, i.e., pI(AjB) = p(AjB) (if pI(B); p(B) 6= 0).

3.3 An alternative perspective on weak and strong silence

Before stating our characterization theorem, we note that there is an alternative and
equivalent way of de�ning weak and strong silence, which gives a di¤erent perspective
on these notions. Informally, weak silence can be taken to mean that the learnt input
implies nothing for the probability of A given B. Strong silence can be taken to mean
that all its implications are �outside� the probability of A given B (i.e., the input
constrains only parts of the agent�s belief state that are orthogonal to the probability
of A given B). To make this more precise, we �rst de�ne the �implication�of a learnt

probability
of A given B

0 1

BAI |

BAI |

I

other parts of
the belief state

Figure 2: The implications IAjB and IAjB derived from input I

input I for the probability of A given B and for other parts of the agent�s belief state.
Again, we assume that ? ( A ( B � Supp(I).

� The implication of I for the probability of A given B is the input,
denoted IAjB, which says everything that I says about the probability of A
given B, and nothing else (see Figure 2). So, IAjB contains all belief states p0

11To be precise, this is true whenever p�(A); p�(BnA) 6= 0.
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which are compatible with I on the probability of A given B. Formally, IAjB is
the set of all p0 in P such that p0(AjB) = p�(AjB) for some p� in I (modulo a
non-triviality constraint).12

� The implication of I outside the probability of A given B is the input,
denoted I

AjB, which says everything that I says outside the probability of A
given B, and nothing else (see Figure 2). So, I

AjB contains all belief states which
are compatible with I outside the probability of A given B. Formally, I

AjB is
the set of all p0 in P which coincide with some p� in I outside the probability
of A given B (modulo a non-triviality constraint).13

Clearly, I � IAjB and I � IAjB. The inputs IAjB and IAjB capture two orthogonal
components (�sub-inputs�) of the full input I. Each component encodes part of the
information conveyed by I. Weak and strong silence can now be characterized (and
thereby alternatively de�ned) as follows.

Proposition 2 For all inputs I 2 I and events A, B (where ? ( A ( B � Supp(I)),
(a) I is weakly silent on the probability of A given B if and only if IAjB = P (i.e.,

I implies nothing for the probability of A given B),
(b) I is strongly silent on the probability of A given B if and only if I

AjB = I (i.e.,
I implies only something outside the probability of A given B).

We can illustrate this proposition by combining Figures 1 and 2. According to part
(a), weak silence means that the sub-input IAjB, which pertains to the probability of
A given B, is vacuous. Graphically, it covers the entire area in the plot. According
to part (b), strong silence means that the input I conveys no information beyond
the sub-input I

AjB, which pertains to those parts of the agent�s belief state that
are orthogonal to the probability of A given B. Graphically, the input I covers a
rectangular area ranging from the far left to the far right.

3.4 The theorem

We have seen that the strong version of our conservativeness axiom, de�ned in terms
of weak silence, leads to an impossibility result. By contrast, its weaker counterpart,
de�ned in terms of strong silence, yields a characterization of Bayes�s and Je¤rey�s
rules. As we will see in the next section, it also yields a structurally identical charac-
terization of two other rules.

Theorem 1 Bayes�s and Je¤rey�s rules are the only responsive and conservative
belief-revision rules on the domains DBayes and DJe¤ rey, respectively.

Corollary 1 Every responsive and conservative belief-revision rule on some domain
D � P � I coincides with Bayes�s rule on D \ DBayes and with Je¤rey�s rule on
D \DJe¤ rey.
12 In full precision, IAjB is the set of all p

0 in P such that if p0(B) 6= 0 then p0(AjB) = p�(AjB) for
some p� in I satisfying p�(B) 6= 0.
13 In full precision, IAjB is the set of all p

0 in P such that if there is a belief state p� in I satisfying
[p�(C) 6= 0 for all C 2 fA;BnAg such that p0(C) 6= 0], then p0 coincides with some such p� outside
the probability of A given B.
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It is easier to prove that if a belief-revision rule on one of these domains is
responsive and conservative, then it must be Bayes�s or Je¤rey�s rule, than to prove the
converse implication, namely that each of these rules is responsive and conservative
on its domain. To illustrate the easier implication, note, for instance, that if a belief-
input pair (p; I) belongs to DBayes, such as I = fp0 : p0(B) = 1g, then the new belief
state pI equals pI(�jB) (since pI(B) = 1, by responsiveness), which equals p(�jB) (by
conservativeness, as I is strongly silent on probabilities given B). The reason why
the converse implication is harder to prove is that it is di¢ cult to identify all the
conditional probabilities on which a given input is strongly silent; there are more
such conditional probabilities than one might expect. Once we have identi�ed all
those conditional probabilities, we must verify that the corresponding belief-revision
rule does indeed preserve all of them, as required by conservativeness.

4 Two further belief-revision rules

We now extend our characterization to two further non-Bayesian belief-revision rules,
showing that they, too, are the only responsive and conservative rules on their respect-
ive domains. They are less well known than Je¤rey�s rule, but are of interest in their
own right. The �rst, which we call the �dual-Je¤rey�rule, stands out for its natural
�duality�to Je¤rey�s rule. The second, Adams�s rule, is inspired by Ernst Adams�s
work on the logic of conditionals (Adams 1975), although it was introduced formally
by Bradley (2005). We �rst explain these rules informally, before representing them
in our framework. We begin with the �dual-Je¤rey�rule.

4.1 The dual-Je¤rey rule

As in our de�nition of Je¤rey�s rule, let C be a partition of the set 
 into �nitely
many non-empty events. Now suppose that, for each event C in C, the agent learns
a new assignment of conditional probabilities to all other events, given C. More
formally, the agent learns a new conditional probability distribution given the partition
C, i.e., a family (�C)C2C of probability measures �C 2 P, each of which has support
Supp(�C) = C. (The support of a probability measure p is Supp(p) := f! 2 
 :
p(!) 6= 0g.) Then �C assigns to each event A � 
 a new conditional probability, given
C. The �dual-Je¤rey�rule says that, upon learning this new conditional probability
distribution (�C)C2C , one should move from the prior probability measure p to the
posterior probability measure p0 given by

p0(A) =
X
C2C

�C(A)p(C) for all events A � 
:

For instance, the agent might learn a new conditional probability distribution
given the events of �rain� (C) and �no rain� (C); so C = fC;Cg. He might learn
that, given rain, �ooding is more likely than previously expected, whereas without
rain, there is a greater risk of forest �re. Under the dual-Je¤rey rule, the agent would
then revise these conditional probabilities accordingly, while leaving his unconditional
probabilities for the events C and C unchanged.

12



Dual-Je¤rey revision also permits the possibility of learning some new conditional
probabilities given a single event C, without learning any new conditional probabilities
given its complement C. In this case, the partition C consists of the event C and all
singleton events f!g, where ! 2 C.14 The new conditional probabilities given C are
then speci�ed by �C , while each �f!g is trivially given by �f!g(!) = 1.

The duality between Je¤rey�s rule and the dual-Je¤rey rule lies in the fact that,
when B = C, the two rules a¤ect complementary parts of the agent�s belief state.
While the former a¤ects only unconditional probabilities of events in B and leaves
any conditional probabilities given these events una¤ected, the latter does the reverse.

4.2 Adams�s rule

While the de�nitions of Je¤rey�s rule and the dual-Je¤rey rule each involve a single
partition of the set 
 into �nitely many non-empty events, we now consider two such
partitions, B and C. Suppose that the agent learns a new conditional probability �CB
of any event B in partition B, given any event C in partition C (without learning
any new unconditional probability of C or any new conditional probabilities given
B \ C). More formally, the agent learns a new conditional probability distribution
on B given C, i.e., a family of numbers indexed by both B and C, denoted (�CB)C2CB2B,
subject to two conditions. First,

P
B2B �

C
B = 1 for all C 2 C; and second �CB > (=)

0 whenever B \ C 6= (=) ?. Adams�s rule (e.g., Bradley 2005, 2007, Douven and
Romeijn 2011) says that, upon learning (�CB)

C2C
B2B, one should move from the prior

probability measure p to the posterior probability measure p0 given by

p0(A) =
X

B2B;C2C
p(AjB \ C)�CBp(C) for all A � 
:15

For instance, suppose the agent learns that it will rain with probability 9
10 , given

a �rainy�forecast, and with probability 3
10 , given a �dry�forecast. Then partition B

contains the events of rain (B) and no rain (B), and partition C contains the events
of a �rainy�forecast (C) and a �dry�forecast (C), where �CB =

9
10 , �

C
B
= 1

10 , �
C
B =

3
10 ,

and �C
B
= 7

10 . Another example is learning an equation of the form X = f(Y ) + �,
where X and Y are two random variables, f is a deterministic function, and � is a
random error independent of Y . Learning this equation is equivalent to learning that
X has a particular conditional distribution given Y .

Like the dual-Je¤rey rule, Adams�s rule can also accommodate the case in which
the agent learns only a single conditional probability, such as only the probability of
rain given a �rainy�forecast. In that case, B contains the events of rain (B) and no
rain (B), while C contains the event C of a �rainy�forecast and all singleton events of
the form f!g for ! 2 C.16 We could then still have �CB = 9

10 and �
C
B
= 1

10 and de�ne

14This assumes that 
nC is �nite, since we require the partition C to be �nite. Although a
generalization to countable partitions is possible, we set this aside for expositional simplicity.
15The revised belief p0 is only de�ned under the condition that p(B \ C) 6= 0 for all B 2 B and

C 2 C such that B \ C 6= ? and p(C) 6= 0. This condition ensures that, in the present formula, the
term p(AjB \ C) is de�ned whenever it matters, i.e., whenever the term �CBp(C) with which it is
multiplied is non-zero.
16As in the dual-Je¤rey case, this requires 
nC to be �nite.
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each �f!gB0 (B0 2 B) to be 1 if ! 2 B0 and 0 if ! 62 B0.
When 
 is �nite, Adams�s rule generalizes the dual-Je¤rey rule, which is obtained

if B is the �nest partition ffag : a 2 
g.17 It also �almost�generalizes Je¤rey�s rule,
since if C is the coarsest partition f
g we obtain Je¤rey revision with learnt input
(�B)B2B � (�
B)B2B, where this input is not maximally general since each �B (= �
B)
is non-zero.

4.3 The two rules in our framework

We can now de�ne and characterize these two rules in our general framework. We
begin by de�ning the relevant inputs.

De�nition 5 A learnt input I 2 I is
� dual-Je¤ rey if I = fp0 : p0(�jC) = �C for all C 2 C with p0(C) 6= 0g for
some conditional probability distribution (�C)C2C given some partition C; we
then write I = I(�C)C2C ;

18

� Adams if I = fp0 : p0(BjC) = �CB for all B 2 B and all C 2 C with p0(C) 6= 0g
for some conditional probability distribution (�CB)

C2C
B2B on some partition B given

some partition C; we then write I = I(�CB)C2CB2B
.19

As already noted, the class of Adams inputs is very general: it includes all dual-
Je¤rey inputs (for �nite 
) and �almost�all Je¤rey inputs (for details, see our earlier
remarks). The two belief-revision rules can be de�ned as follows.

De�nition 6
� Let Ddual-Je¤ rey be the set of all pairs (p; I) 2 P � I such that I = I(�C)C2C is a
dual-Je¤rey input (every dual-Je¤rey input is �compatible�with p). The dual-
Je¤ rey rule is the revision rule on Ddual-Je¤ rey which maps each (p; I(�C)C2C) 2
Ddual-Je¤ rey to p0 2 P, where

p0(A) =
X
C2C

�C(A)p(C) for all events A � 
: (4)

� Let DAdams be the set of all pairs (p; I) 2 P � I such that I = I(�CB)
C2C
B2B

is an

Adams input compatible with p (which means p(B \ C) 6= 0 for all B 2 B and
C 2 C such that B \C 6= ? and p(C) 6= 0). Adams�s rule is the revision rule
on DAdams which maps each (p; I(�CB)C2CB2B

) 2 DAdams to p0 2 P, where

p0(A) =
X

B2B;C2C
p(AjB \ C)�CBp(C) for all A � 
: (5)

17 In principle, we could de�ne Adams�s rule more generally, by allowing the relevant partitions of

 to be countable rather than �nite. For expositional simplicity, we set this generalization aside here.
18The representation I = I(�C)C2C is unique, because for any dual-Je¤rey input I, there exists a

unique family (�C)C2C such that I = I(�C)C2C .
19For any Adams input I, there are multiple families of the form (�CB)

C2C
B2B such that I = I(�C

B
)C2C
B2B

(though we show in Lemma 5 in the Appendix that one family stands out as canonical). We return
to the implications of this non-uniqueness in footnote 20.
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In analogy to our earlier de�nitions, the domains Ddual-Je¤rey and DAdams are the
maximal domains for which formulas (4) and (5) are well-de�ned.20 Of course, the
notion of silence and our two axioms can be applied to the present two domains as
well. For example,

� a dual-Je¤rey input is not silent on the conditional probabilities, given each
event in the relevant partition C, but is silent on the unconditional probabilities
of the events in C;

� an Adams input is silent on the unconditional probabilities of the events in par-
tition C and on conditional probabilities given events from the join of partitions
B and C.

We can �nally extend our main theorem to the domains of dual-Je¤rey and Adams
inputs.

Theorem 2 The dual-Je¤rey rule and Adams�s rule are the only responsive and con-
servative belief-revision rules on the domains Ddual-Je¤ rey and DAdams, respectively.

Corollary 2 Every responsive and conservative belief-revision rule on some domain
D � P � I coincides with the dual-Je¤rey rule on D \Ddual-Je¤ rey and with Adams�s
rule on D \DAdams.

As before, it is easier to prove that if a belief-revision rule onDdual-Je¤rey orDAdams
is responsive and conservative, then it must be the dual-Je¤rey rule or Adams�s rule,
than to prove the converse, namely that each of these rules is responsive and con-
servative on its domain. The main challenge, again, is to identify all the conditional
probabilities on which a dual-Je¤rey input or an Adams input is strongly silent, in
order to establish conservativeness. The present section completes our uni�ed char-
acterization of four distinct belief-revision rules.

5 A decision-theoretic application

To show that there is room for non-Bayesian belief-revision rules in economic theory,
we now sketch an illustrative application to decision and game theory. Standard dy-
namic decision and game theory is inherently Bayesian. As is widely recognized, this
sometimes entails unrealistic assumptions of forward-looking rationality, which limit
the ability to model real-life learning, reasoning, and behaviour. We give an example
which illustrates some of these di¢ culties and shows how a non-Bayesian model can
avoid them. The example suggests a new class of dynamic decision problems or games,
those �with surprises�or �with unforeseen learning inputs�.

Ann, an employer, must decide whether to hire Bob, a job candidate. There is
no time for a job interview, since a quick decision is needed. Ann is uncertain about
20The de�nition of the dual-Je¤rey rule and its domain relies on the fact that each dual-Je¤rey

input I is uniquely representable as I(�C)C2C . Although the representation of any Adams input as
I = I(�C

B
)C2C
B2B

is far from unique, Adams�s rule is nonetheless well-de�ned. This is because the revision

formula (5) and the domain de�nition are invariant under the choice of family (�CB)
C2C
B2B representing

I. This non-trivial fact is shown in the Appendix, where we also give a characterization of the families
(�CB)

C2C
B2B representing a given Adams input. See Lemmas 2 and 4 for details.
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Figure 3: Ann�s decision problem in its initial form

whether Bob is competent or not; both possibilities have prior probability 1
2 . It would

help Ann to know whether Bob has previous work experience, since this is positively
correlated with competence, but gathering this information takes time. Bob�s type is
thus a pair (�; �) whose �rst component indicates whether he is competent (� = c) or
not (� = c) and whose second component indicates whether he has work experience
(� = e) or not (� = e). To apply a belief-revision model, let the set of worlds be
the set of possible types of Bob, i.e., 
 = fc; cg � fe; eg. Ann�s initial beliefs about
Bob�s type are given by the belief state p 2 P in which p(c; e) = p(c; e) = 0:4 and
p(c; e) = p(c; e) = 0:1. Note the positive correlation between competence and work
experience.

Ann initially seems to face the dynamic decision problem shown in Figure 3:

� First, a chance move determines Bob�s type in 
 according to the probability
measure p.

� Next, Ann, uninformed of the chance move, can hire Bob (h) or reject him (h)
or gather information about whether he has previous work experience (g).

� Finally, if Ann chooses g, she faces a subsequent choice between hiring Bob (h)
or rejecting him (h), but now she has information about �, i.e., about whether
he has work experience.

Ann is an expected-utility maximizer, and her utility function is as follows: hiring
Bob, who is of type (�; �), contributes an amount v(�) to her utility, where v(�) = 5
if � = c and v(�) = �5 if � = c; and gathering information about � reduces her
utility by 1. Not hiring Bob yields a utility of 0. Ann has only one rational strategy:
�rst she gathers information (g), and then she hires Bob if and only if she learns that
Bob has work experience (� = e). To see why, note the following. Immediately hiring
Bob yields an expected utility of v(c)p(c) + v(c)p(c) = 512 + (�5)

1
2 = 0. Immediately

rejecting Bob also yields an expected utility of 0. Gathering information leads Ann
to a Bayesian belief revision:

� If she learns that he has work experience, she raises her probability that he is
competent to p(cje) = p(c;e)

p(e) =
0:4
0:5 =

4
5 . So, she hires Bob, since this yields an
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expected utility of (v(c) � 1)p(cje) + (v(c) � 1)p(cje) = 445 + (�6)
1
5 = 2, while

rejecting Bob would have yielded an expected utility of �1.

� If she learns that Bob has no work experience, she lowers her probability that
he is competent to p(cje) = p(c;e)

p(e) =
0:1
0:5 =

1
5 . So, she rejects him as this yields

an expected utility of �1, whereas hiring him would have yielded an expected
utility of (v(c)� 1)p(cje) + (v(c)� 1)p(cje) = 415 + (�6)

4
5 = �4.

So ex ante the expected utility of gathering information is the average 2p(e) +
(�1)p(e) = 212 + (�1)

1
2 =

1
2 , which exceeds the zero expected utility of the two

other choices.
So far, everything is classical. Now suppose Ann follows her rational strategy.

She writes to Bob to ask whether he has work experience. At this point, however,
something surprising happens. Bob�s answer reveals right from the beginning that
his written English is poor. Ann notices this even before �guring out what Bob
says about his work experience. In response to this unforeseen learnt input, Ann
lowers her probability that Bob is competent from 1

2 to
1
8 . It is natural to model

this as an instance of Je¤rey revision. Formally, Ann learns the Je¤rey input I =
fp0 2 P : p0(c) = 1

8g, and by Je¤rey�s rule her revised belief state pI is given by
pI(c; e) =

1
10 , pI(c; e) =

1
40 , pI(c; e) =

7
40 , and pI(c; e) =

7
10 . As she reads the

rest of Bob�s letter, Ann eventually learns that he has previous work experience,
which prompts a Bayesian belief revision, so that her �nal belief state is pI(�je) (or
equivalently, (pI)I0 where I 0 is the Bayesian input I 0 = fp0 2 P : p0(e) = 1g). Since
Ann�s posterior probability for Bob�s competence is only pI(cje) = pI(c;e)

pI(c;e)+pI(c;e)
= 4

11 ,
she decides not to hire him, despite his work experience.

Can classical decision theory explain this? Of course, the dynamic decision prob-
lem shown in Figure 3 is no longer adequate, as it wrongly predicts that Ann hires
Bob after learning that he has work experience. The natural response, from a clas-
sical perspective, would be to re�ne the decision problem as shown in Figure 4(a).
After Ann�s information-gathering move g an additional chance move is introduced,
which determines whether Bob�s written English is normal (w) or poor (w), where
the probability of w, denoted t�;�, is larger if Bob is competent than if he is not, i.e.,
tc;� > tc;� . After observing this chance move, Ann makes her hiring decision.

Although this re�ned classical model predicts that Ann turns down Bob after
receiving his poorly written letter, it is inadequate in many ways. It ignores the fact
that Ann is initially unaware of �or does not consider �the possibility that Bob�s
written English is poor (suppose, for instance, that based on her initial information,
she had no reason to doubt, or even to think about, Bob�s literacy). It treats the
event of a poorly written letter from Bob as a foreseen rather than an unforeseen
contingency. As a result, Ann�s reasoning at each of her decision nodes is modelled
in an inadequate manner:

(i) In her �rst decision (between h; h, and g), Ann is falsely taken to foresee the
possibilities of learning w or learning w, i.e., to reason along the tree displayed
in Figure 4(a) rather than that in Figure 3. This arti�cially complicates her
expected-utility maximization exercise, for instance by assuming awareness of
the four parameters t�;�, for all values of � and �.
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Figure 4: Two ways of re�ning Ann�s decision problem

(ii) In her second decision, in case Bob�s written English is normal, Ann is taken
to have learnt not just the parameter �, but also the chance move w (normal
written English), so that her posterior probability for Bob�s competence is now
p(cj�;w) rather than p(cj�). The additional conditionalization on w misrep-
resents Ann�s beliefs, since the absence of linguistic errors in Bob�s letter goes
unnoticed: it is not an unforeseen event (she had taken Bob�s normal literacy
for granted). In fact, Ann continues to conceptualize her decision problem as
the one shown in Figure 3 rather than the one in 4(a). The additional belief
revision (upon learning w) departs from, and complicates, Ann�s true reasoning.

(iii) In her second decision, in case Bob�s written English is poor, Ann�s reason-
ing is again misrepresented. Although it is true that the unforeseen news that
Bob�s written English is poor implies that Ann cannot uphold her original con-
ceptualization of the decision problem (Figure 3), it does not follow that Ann
re-conceptualizes her decision problem in line with Figure 4(a). Our informal
description of Ann�s reasoning takes her to perform a Je¤rey revision of her be-
liefs over 
 = fc; cg�fe; eg, whereas Figure 4(a) takes her to perform a Bayesian
revision of beliefs over the re�ned set of worlds 
0 = fc; cg � fe; eg � fw;wg.

Arguably, the Bayesian model of Ann�s behaviour is not only psychologically inad-
equate, but its predictive adequacy is also far from clear. Whether the model correctly
predicts Ann�s behaviour at the various decision nodes depends on the exact calib-
ration of the parameters t�;�, for all values of � and �. Their most plausible (e.g.,
�objective�) values might not imply Ann�s true decision behaviour, since that beha-
viour has a rather di¤erent psychological origin, which does not involve the parameters
t�;� at all.

We propose to model Ann�s decision problem non-classically as a decision prob-
lem with unforeseen inputs or surprises. As illustrated in Figure 4(b), instead of
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introducing a chance move (selecting w or w), we introduce a surprise move, which
determines whether or not Ann receives a particular unforeseen input (here, the Jef-
frey input I = fp0 2 
 : p0(c) = 1

8g). Then the problems in (i), (ii), and (iii) no longer
arise:

� Problem (i) is avoided because Ann does not foresee or conceptualize the sur-
prise move before its occurrence, so that she initially still reasons along the
simple decision tree of Figure 3.

� Problem (ii) is avoided because in her second decision, without receiving the
unforeseen input (the right branch at the surprise node), Ann only learns �
and hence reasons like in her second decision in the simple decision problem of
Figure 3.

� Problem (iii) is avoided because in her second decision, after receiving the un-
foreseen input (the left branch at the surprise node), Ann revises her beliefs in
response to the Je¤rey input I.

In follow-up work, we formally de�ne decision problems (or more generally games)
with unforeseen inputs and introduce a corresponding equilibrium notion.21 The
details are beyond the scope of the present paper. Our aim in this section has simply
been to illustrate that there is useful room for non-Bayesian belief-revision rules in a
decision-theoretic model.

6 Concluding remarks

We have developed a uni�ed framework for the study of belief revision and shown that
Bayes�s rule as well as three salient non-Bayesian alternatives can be characterized in
terms of the same two axioms: responsiveness to the learnt input and conservativeness.
The only di¤erence between the four rules lies in the domain of learnt inputs to
which they apply. Previous characterizations of Bayes�s, Je¤rey�s, and Adams�s rules
tended to be less uni�ed. They typically characterized di¤erent rules either in terms
of di¤erent axioms or as �distance-minimizing�with respect to di¤erent notions of
distance between probability measures.

Beyond o¤ering a novel formal framework, the programmatic aim of this paper
has been to put non-Bayesian belief revision onto the map for economic theorists. No
doubt, skeptics will still wonder, �why bother about non-Bayesian belief revision�. By
suitably re�ning the set 
 of possible worlds, so the objection goes, we can always
remodel Je¤rey, dual-Je¤rey, and Adams inputs in a Bayesian manner. However, as
we have noted in our discussions of Suzumura�s story and �Ann the employer�, such
Bayesian remodelling comes at a cost:

� Over-ascription of opinionation: A key drawback of the Bayesian remodel-
ling is that we must assume that the agent is able to assign prior probabilities to
many complex events. In Suzumura�s story, the agent must assign assign prior

21Ann�s equilibrium strategy in her decision problem with unforeseen inputs has the intended form:
she �rst gathers information (g), and then hires Bob if and only if she does not receive the unforeseen
input I (Bob�s poor written English) and learns that he has work experience (� = e).
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probabilities to the various possible auditory signals that he might receive over
the phone. Similarly, Ann the employer must assign prior probabilities to the
various possible Je¤rey inputs she might receive. These may include not only
learning that Bob�s written English is poor, but also that he is a poetic writer,
that he comes across as communicatively awkward in a way that she had not
anticipated, and so on. To accommodate the possibility of belief changes in re-
sponse to such inputs, we would have to ascribe to the agent beliefs over an ever
more re�ned algebra of events, whose size grows exponentially with the number
of belief changes to be modelled. This is not very plausible, since typical real-
world agents either have no beliefs about such events or have only imprecise
ones. Even on a pure �as-if� interpretation of the Bayesian model, taking an
agent to have highly sophisticated beliefs is dubious, given the complexity of
their behavioural implications, which may be hard to test empirically. By con-
trast, as soon as we restrict the complexity of the event-algebra, we may have
to invoke non-Bayesian belief revision to capture the agent�s belief dynamics
adequately.

� Over-ascription of awareness: The literature on unawareness suggests that
a belief in an event (the assignment of a subjective probability to it) presupposes
awareness of this event, where awareness is understood, not as knowledge of the
event�s occurrence or non-occurrence, but as conceptualization, mental repres-
entation, imagination, or consideration of its possibility (e.g., Dekel et al. 1998;
Heifetz et al. 2006; Modica and Rustichini 1999). But as we have noted, it is far
from clear whether, prior to the telephone conversation with Gorman, Suzumura
even considered the possibility of receiving incomprehensible auditory signals,
or whether Ann the employer would have considered the possibility that Bob�s
written English was so poor. In these examples, the agents plausibly lacked
not only knowledge but also awareness of the �surprise events�. Arguably, many
real-life belief changes involve the observation or experience of something that
was previously not just unknown, but even beyond awareness or imagination.

In sum, an economic modeller often faces a choice between

(i) ascribing to an agent Bayesian revision of beliefs over a very complex, �ne-
grained algebra of events and

(ii) ascribing non-Bayesian revision of beliefs over a simpler, more coarse-grained
algebra of events.

Perhaps because of the elegance of Bayes�s rule, many economists tend to assume
that the �rst of these routes is more parsimonious than the second. But this overlooks
the loss of parsimony at the level of the event-algebra. If all non-Bayesian belief-
revision rules were ad hoc or otherwise unsatisfactory, the choice of route (i) would
be understandable. But as we have shown, there are perfectly well-behaved non-
Bayesian alternatives. This should make option (ii) at least a contender worth taking
seriously.
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A Appendix: Proofs

Notationally, for all a 2 
, let �a 2 P be the Dirac measure in a, de�ned by �a(a) = 1.

A.1 Well-de�nedness of each revision rule

As mentioned, each of our four belief-revision rules is well-de�ned because the math-
ematical object used in the de�nition of the new belief state and the rule�s domain
(i.e., the learnt event B or the learnt families (�B), (�C)C2C , or (�CB)

C2C
B2B) is either

uniquely determined by the relevant input I or at least su¢ ciently determined so that
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the de�nition does not depend on non-unique features. This fact deserves a proof.
For Bayes�s, Je¤rey�s, and the dual-Je¤rey rules, the proof is trivial and given by the
following three lemmas (which the reader can easily verify):

Lemma 1 Every Bayesian input is generated by exactly one event B � 
.

Lemma 2 Every dual-Je¤rey input is generated by exactly one family (�C)C2C.

Lemma 3 For every Je¤rey input I,
(a) all families (�B)B2B generating I have the same subfamily (�B)B2B:�B 6=0 (es-

pecially, the same set fB 2 B : �B 6= 0g);
(b) in particular, for every (initial) belief state p 2 P, the (revised) belief state (2)

is either (i) de�ned and identical for all families (�B)B2B generating I, or (ii)
unde�ned for all these families.22

The well-de�nedness of Adams�s rule is harder to establish. We begin with a
lemma which characterizes the common features of all families (�CB)

C2C
B2B generating

a given Adams input I. This determines the extent to which the generating family
(�CB)

C2C
B2B is unique. We show that the partition C is essentially unique: its members

are �xed, with the exception of �trivial�members. A member C of C is �trivial�if it
is included in some member of B, which implies that any �CB (B 2 B) must be 1 (if
C � B) or 0 (if B \ C = ?). We also show that, while the partition B is far from
unique, the join of partitions

B _ C = fB \ C : B 2 B; C 2 Cgnf?g

is essentially unique. On a �rst reading of the lemma, one may assume that C contains
no trivial members (so that Ctriv = ?). In this case, the lemma states that C and
B _ C are fully unique.

Lemma 4 Let I be an Adams input. All families (�CB)
C2C
B2B generating I have

(a) the same set CnCtriv, where Ctriv := fC 2 C : C is a subset of some B 2 Bg,
(b) the same set (B _ C)nCtriv, where Ctriv is de�ned as in part (a),
(c) for each a 2 
, the same value �CaBa , where Ba (resp. Ca) denotes the member

of B (resp. C) containing a.

Proof. Consider an Adams input I. The proof consists of a series of claims about
an arbitrary family (�CB)

C2C
B2B generating I. Claims 5, 7, and 8 complete the proofs of

parts (a), (b), and (c), respectively. For each a 2 
, let Ba denote the set in B that
contains a. Similarly, let Ca and Da denote the sets in C and B_C, respectively, that
contain a. Note that Da = Ba \ Ca for all a 2 
.

Our strategy is to show that the sets CnCtriv and (B _C)nCtriv and the values �CaBa
(a 2 
) can be de�ned in terms of I alone, rather than in terms of the family (�CB)C2CB2B
generating I. This establishes independence of the choice of family. We �rst prove
that several other objects �such as the number jfB 2 B _ C : B � Cagj in Claim 1
and the set CanDa in Claim 2 (with a 2 
) �can be de�ned in terms of I alone.
22Footnote 1 speci�es when (2) is de�ned.
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Claim 1 : For each a 2 
, jfB 2 B _ C : B � Cagj = minp02I:p0(a) 6=0 jSupp(p0)j.
Let a 2 
. To show that minp02I:p0(a) 6=0 jSupp(p0)j � jfB 2 B _ C : B � Cagj,

consider any p0 2 I such that p0(a) 6= 0. It su¢ ces to consider any B 2 B _ C such
that B � Ca and to show that p0(B) 6= 0. If a 2 B, the latter is evident, since
p0(a) 6= 0. Now let a 62 B. Since B 2 B _ C and B � Ca, we have B = B0 \ Ca for
some B0 2 B. Note that p0 2 I and p0(Ca) 6= 0. So, we have p0(B0jCa) = �CaB0 6= 0;
and therefore p0(B0 \ Ca) 6= 0, i.e., p0(B) 6= 0.

To show the converse inequality

min
p02I:p0(a) 6=0

��Supp(p0)�� � jfB 2 B _ C : B � Cagj ;
note that we can �nd p0 2 I with p0(a) 6= 0 such that��Supp(p0)�� = jfB 2 B _ C : B � Cagj ;
namely by picking an element aB from each set B in fB 2 B _ C : B � Cag,
where aDa = a, and de�ning p0 as the unique probability function in P such that
Supp(p0) = faB : B 2 B _ C : B � Cag and p0(aBjCa) = �CaB0 for all B 2 B _ C with
B � Ca (where B0 again stands for the set in B such that B = B0 \ Ca). �

In the rest of this proof, for all a 2 
, we let Ia be the set of all p0 2 I such that
Supp(p0) is minimal (with respect to set inclusion), subject to p0(a) 6= 0.

Claim 2 : For all a 2 
, CanDa = ([p02IaSupp(p0))nfag.
Let a 2 
. The claim follows from the fact that, as the reader may verify, Ia is

the set of all p0 2 P such that, for every B 2 B_C included in Ca, there exists aB 2 B
such that (i) aDa = a, (ii) Supp(p

0) = faB : B 2 B _ C; B � Cag (hence, p0(Ca) = 1),
and (iii) p0(aB) = �

Ca
B0 (i.e., p

0(aBjCa) = �CaB0 ) for all B 2 B _C included in Ca, where
B0 again stands for the set in B for which B = B0 \ Ca. �

Claim 3 : For all a 2 
, the following are equivalent: (i) Da = Ca, (ii) Ca � Ba,
(iii) �a 2 I, and (iv) Ia = f�ag.

For all a 2 
, (i) is equivalent to (ii), since Da = Ba\Ca; (ii) is clearly equivalent
to (iii); and (iii) is equivalent to (iv) by the de�nition of Ia. �

In the following, for each a 2 
 with Da 6= Ca (i.e., with Ca 6� Ba), let c(a) be a
�xed element of CanDa.

Claim 4 : For all a 2 
 such that �a 62 I (i.e., such that Da 6= Ca by Claim 3),
Ca = [p02Ia[Ic(a)Supp(p0).

Consider a 2 
 such that �a 62 I, i.e., by Claim 3 such that Da 6= Ca. Note that
Cc(a) = Ca and also that Dc(a) and Da are non-empty disjoint subsets of Ca (= Cc(a)).
We may write Ca as

Ca = (CanDa) [ (CanDc(a)).

So, by Claim 2 applied to a and to c(a),

Ca =
�
([p02IaSupp(p0))nfag

�
[
h
([p02Ic(a)Supp(p0))nfc(a)g

i
:

Since
c(a) 2 ([p02IaSupp(p0))nfag and a 2 ([p02Ic(a)Supp(p0))nfc(a)g,
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it follows that

Ca = ([p02IaSupp(p0)) [ ([p02Ic(a)Supp(p0))
= [p02Ia[Ic(a)Supp(p0). �

Claim 5 : We have

CnCtriv =
n
[p02Ia[Ic(a)Supp(p0) : a 2 
; �a 62 I

o
(which proves part (a), since CnCtriv depends on I alone, rather than on the particular
family (�CB)).

Note that C = fCa : a 2 
g and Ctriv = fCa : a 2 
; Da = Cag. So,

CnCtriv = fCa : a 2 
; Da 6= Cag .

This establishes the present claim, by Claim 4. �
Claim 6 : For all a 2 
 such that �a 62 I (i.e., such that Da 6= Ca by Claim 3),

Da =
h
[p02Ic(a)Supp(p0)

i/ �
[p02IaSupp(p0)

�
fag

�
:

Consider any a 2 
 such that �a 62 I. We have Da = Can(CanDa). Hence, using
the expressions for Ca and CanDa found in Claims 4 and 2,

Da =
h
[p02Ia[Ic(a)Supp(p0)

i/ �
[p02IaSupp(p0)

�
fag

�
.

It is clear that we can replace �Ia [ Ic(a)�with �Ic(a)�without changing the resulting
set Da. �

Claim 7 : We have

(B _ C)nCtriv =
nh
[p02Ic(a)Supp(p0)

i/
�
[p02IaSupp(p0)

�
fag

�
: a 2 
; �a 62 I

	
(which proves part (b), since (B _ C)nCtriv depends on I alone, rather than on the
particular family (�CB)).

Since B _ C = fDa : a 2 
g and Ctriv = fDa : a 2 
; Da = Cag, we have

(B _ C)nCtriv = fDa : a 2 
; Da 6= Cag.

The present claim now follows from Claim 6. �
Claim 8 : Part (c) of the lemma holds.

Let a 2 
. Consider any other family (e� eCeC) eC2eCeB2 eB also generating I. De�ne eBa
(resp. eCa, eDa) as the set in eB (resp. eC, eB _ eC) containing a, and de�ne eCtriv as
fC 2 eC : C � B for some B 2 eBg. We must show that �CaBa = e� eCaeBa . By parts (a) and
(b) (which were proved in Claims 5 and 7),

CnCtriv = eCneCtriv; (6)

(B _ C)nCtriv = ( eB _ eC)neCtriv. (7)
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By (6), we have [C2CnCtrivC = [
C2eCneCtrivC. So, taking complements in 
 on both

sides,
[C2CtrivC = [C2eCtrivC: (8)

We distinguish between two cases.
Case 1 : a belongs to a set in Ctriv, or equivalently by (8), to a set in eCtriv. Since

a belongs to a set in Ctriv, we have Ca � Ba, whence �
Ca
Ba
= 1. Similarly, since a

belongs to a set in eCtriv, we have eCa � eBa, whence e� eCaeBa = 1. So, �CaBa = e� eCaeBa (= 1).
Case 2 : a does not belong to a set in Ctriv, or equivalently, to a set in eCtriv. We

deduce �rstly, using (6), that a belongs to a set in CnCtriv = eCneCtriv, so that Ca = eCa;
and secondly, using (7), that a belongs to a set in (B _ C)nCtriv = ( eB _ eC)neCtriv,
so that Da = eDa. Choose any p0 in I such that p0(Ca) 6= 0 (of course there is

such a p0 in I). Then, as the families (�CB) and (e� eCeB) both generate I, we have
p0(BajCa) = �CaBa and p

0( eBaj eCa) = e� eCaeBa . So, it su¢ ces to show that p0(BajCa) =
p0( eBaj eCa), i.e., that p0(Ba \ Ca)=p0(Ca) = p0( eBa \ eCa)=p0( eCa), or equivalently, that
p0(Da)=p0(Ca) = p0( eDa)=p0( eCa). This holds because Da = eDa and Ca = eCa. �

The next lemma shows that, among the families representing a given Adams input
I, one stands out as canonical.

Lemma 5 Let I be an Adams input. Among all families (�CB)
C2C
B2B generating I, there

is exactly one �canonical�family such that
(a) B re�nes C (i.e., each C in C is a union of one or more sets in B),
(b) B and C have at most one event in common.23

Condition (a) on the family �more precisely, on the partitions B and C �is the
key requirement. Essentially, it requires a �ne-grained choice of B. Starting with an
arbitrary family (�CB)

C2C
B2B generating I, one can ensure the satisfaction of condition

(a) by re�ning B, i.e., by replacing each B 2 B with all non-empty set(s) of the
form B \ C, where C 2 C. Condition (b) is simply a convention to avoid trivial
redundancies. Any set B 2 B\C leads to the trivial value �BB = 1. It su¢ ces to have
at most one such set, since if there are many sets in B \ C, they can be replaced by
their union. We have just given an intuition for the lemma�s existence claim. The
uniqueness claim will be proved using Lemma 4.

Proof. Let I be an Adams input.
Part 1 : In this part, we prove the existence of a family which generates I and has

the two properties (a) and (b). Let (�CB)
C2C
B2B be any family generating I, i.e.,

I = fp0 : p0(BjC) = �CB 8B 2 B 8C 2 C such that p0(C) 6= 0g. (9)

We now de�ne a new family (b�CB)C2bCB2 bB, of which we later show that it generates the
same input I and has the two required properties, namely that bB re�nes bC and that��� bB \ bC��� � 1.
23Given condition (a), we can restate condition (b) equivalently as follows: �CB = 1 for at most one

pair of events B 2 B and C 2 C.
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Consider the �trivial�part of the partitions B and C, de�ned as Ctriv := fC 2 C :
C � B for some B 2 Bg. The partition bC is de�ned as C if Ctriv = ?, while otherwise
it is derived from C by replacing the trivial part with a single set:

bC := � C if Ctriv = ?
(CnCtriv) [ f[C02CtrivC 0g if Ctriv 6= ?.

The partition bB is de�ned as the join of B and C if Ctriv = ?, and otherwise it is
derived from this join by replacing the trivial part with a single set:

bB := � B _ C if Ctriv = ?
((B _ C)nCtriv) [ f[C02CtrivC 0g if Ctriv 6= ?.

Finally, for all B 2 bB and C 2 bC, de�ne
b�CB :=

8<:
�CB0 if B ( C (so that C 2 CnCtriv), where B0 is the set in B with B � B0
1 if B = C (so that B = C = [C02CtrivC 0)
0 if B \ C = ?.

Note that the three mentioned cases �i.e., B ( C, B = C, and B \C = ? �are the
only possibilities, since bB re�nes bC.

We now show that the family (b�CB)C2bCB2 bB just de�ned has the required properties.
Clearly, bB re�nes bC, and ��� bB \ bC��� � 1 since bB \ bC is empty (if Ctriv = ?) or f[C02T C 0g
(if Ctriv 6= ?). It remains to show that (b�CB)C2bCB2 bB generates I, i.e., that the sets (9)
and bI := fp0 : p0(BjC) = b�CB 8B 2 bB 8C 2 bC such that p0(C) 6= 0g.
coincide.

First, let p0 2 I. To show that p0 2 bI, consider any B 2 bB and C 2 bC such that
p0(C) 6= 0. We have to prove that p0(BjC) = b�CB. We distinguish three cases:
� If B ( C, then p0(BjC) = b�CB, since p0(BjC) and b�CB both equal �CB0 , where B0
denotes the set in B such that B � B0, i.e., such that B = B0 \ C. To see why
p0(BjC) = �CB0 , note that p0(BjC) equals p0(B0jC), which in turn equals �CB0 , as
p0 2 I.

� If B = C, then p0(BjC) = b�CB, since p0(BjC) = 1 and b�CB = 1.
� If B \ C = ?, then p0(BjC) = b�CB, since p0(BjC) = 0 and b�CB = 0.
Conversely, let p0 2 bI. To show that p0 2 I, consider any B 2 B and C 2 C such

that p0(C) 6= 0. We prove p0(BjC) = �CB, again by distinguishing three cases:
� If CnB;C \ B 6= ?, then p0(BjC) = �CB, because p

0(BjC) and �CB both equalb�CB0 , where B0 := B \ C (2 bB). To see why p0(BjC) = b�CB0 , note that p0(BjC)
equals p0(B0jC), which in turn equals b�CB0 as p0 2 bI.

� If CnB = ? (i.e., C � B), then p0(BjC) = �CB, since p0(BjC) = 1 and �CB = 1.
� If B \ C = ?, then p0(BjC) = �CB, since p0(BjC) = 0 and b�CB = 0. �
Part 2 : In this part, we prove the uniqueness claim. Let (�CB)

C2C
B2B and (e�CB)C2eCB2 eB

be two such families. De�ne

Ctriv � fC 2 C : C � B for some B 2 Bg = B \ C,eCtriv � fC 2 eC : C � B for some B 2 eBg = eB \ eC,
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where the equalities on these two lines hold because B re�nes C and eB re�nes eC. By
Lemma 4,

CnCtriv = eCneCtriv, (10)

(B _ C)nCtriv = ( eB _ eC)neCtriv; (11)

�CaBa = e� eCaeBa for all a 2 
; (12)

where, for each a 2 
, the set Ba (and Ca, eBa, eCa, respectively) denotes the member
of B (and of C, eB, eC, respectively) which contains a. Since B re�nes C and eB re�neseC, we have B _ C = B and eB _ eC = eB, so that equation (11) reduces to

BnCtriv = eBneCtriv: (13)

Further, from (10) and the fact that C and eC are partitions of 
 and that each of the
sets Ctriv (= B \ C) and eCtriv (= eB \ eC) contains at most one member, we can deduce
that Ctriv = eCtriv, which together with equations (10) and (13) implies that

C = eC and B = eB: (14)

It remains to prove that �CB = e�CB for all B 2 B (= eB) and C 2 C (= eC). Consider
any B 2 B (= eB) and C 2 C (= eC). If B \ C = ?, then �CB = 0 and e�CB = 0, whence
�CB = e�CB, as required. Now assume B \ C 6= ?. Choose any a 2 B \ C. Since
a 2 B 2 B = eB, we have Ba = eBa = B, and similarly, since a 2 C 2 C = eC, we have
Ca = eCa = C. So, using (12), �CB = e�CB. �

We are now ready to prove that Adams�s rule is well-de�ned.

Lemma 6 For every Adams input I and every (initial) belief state p 2 P, the (re-
vised) belief state (5) is either (i) de�ned and identical for all families (�CB)

C2C
B2B gen-

erating I, or (ii) unde�ned for all these families.24

Proof. Let I be an Adams input and p 2 P. We write � for the set of families
(�CB)

C2C
B2B generating I.
Claim 1 : Expression (5) is de�ned for either (i) every or (ii) no family in �.

Consider two families (�CB)
C2C
B2B and (e� eCeB) eC2eCeB2 eB in �. By footnote 4:2, we have to

show that

[B \ C 6= ?&p(C) 6= 0]) p(B \ C) 6= 0 for all B 2 B; C 2 C (15)

if and only if

[ eB \ eC 6= ?&p( eC) 6= 0]) p( eB \ eC) 6= 0 for all eB 2 eB; eC 2 eC: (16)

We assume (15) and prove (16). The converse implication holds analogously. To
prove (16), consider any eB 2 eB and eC 2 eC such that eB \ eC 6= ? and p( eC) 6= 0. We
have to show that p( eB \ eC) 6= 0. We assume, without loss of generality, that eC 6� eB,
24Footnote 4:2 speci�es when (5) is de�ned.
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since otherwise trivially p( eB \ eC) = p( eC) 6= 0. Again, let Ctriv (eCtriv) be the set of
sets in C (eC) included in a set in B ( eB). As eC 6� eB and eB\ eC 6= ?, we have eC 62 eCtriv.
So, since CnCtriv = eCneCtriv by Lemma 4, we have eC 2 C. Moreover, since eCtriv does
not contain eC, it also does not contain any subset of eC, so that eB \ eC 62 eCtriv. Hence,eB \ eC 2 ( eB _ eC)neCtriv. As we have (B _ C)nCtriv = ( eB _ eC)neCtriv (by Lemma 4), it
follows that eB \ eC 2 B _ C. Thus there exist (unique) B 2 B and C 2 C such thateB \ eC = B \ C. Since eC 2 C, we have C = eC. Using the fact that p(C) = p( eC) 6= 0
and that B \ C = eB \ eC 6= ?, we have p(B \ C) 6= 0 by (15), i.e., p( eB \ eC) 6= 0. �

Claim 2 : The revised belief state (5) is the same for all families (�CB)
C2C
B2B in � for

which it is de�ned.
Let (�CB)

C2C
B2B and (b� bCbB) bC2bCbB2 bB be two families in � for which the revised belief state

is de�ned. We write p0 and bp0 for the corresponding new belief states, respectively.
To show that p0 = bp0, we consider a �xed a 2 
 and show that p0(a) = bp0(a). Note
that

p0(a) = p(ajBa \ Ca)�CaBap(Ca); (17)

bp0(a) = p(aj bBa \ bCa)b� bCabBap( bCa); (18)

where Ba (and Ca, bBa, bCa, respectively) denotes the element of B (and of C, bB,bC, respectively) which contains a. By Lemma 4, we have CnCtriv = bCnbCtriv, where
Ctriv := fC 2 C : C � B for some B 2 Bg and bCtriv := f bC 2 bC : bC � bB for somebB 2 bBg. So, [C2CnCtrivC = [ bC2bCnbCtriv bC, and hence, taking complements on both
sides,

[C2CtrivC = [ bC2bCtriv bC: (19)

We consider two cases.
Case 1 : a does not belong to a set in Ctriv, or equivalently by (19) to a set in bCtriv.

By parts (a), (b), and (c) of Lemma 4, we therefore have Ca = bCa, Ba\Ca = bBa\ bCa,
and �CaBa = b� bCabBa , respectively. So, equations (17) and (18) imply that p0(a) = bp0(a).

Case 2 : a belongs to a set in Ctriv, or equivalently to a set in bCtriv. Then Ca � Ba
and bCa � bBa, whence �CaBa = 1 and b� bCabBa = 1. So, equations (17) and (18) reduce to

p0(a) = p(ajCa)p(Ca) = p(a),bp0(a) = p(aj bCa)p( bCa) = p(a).
Hence, p0(a) = bp0(a). �
A.2 Proposition 1

Proof of Proposition 1. Suppose that #
 � 3. Suppose, for a contradiction, that
there exists a responsive and conservative revision rule on a domain D � DJe¤rey.
Since #
 � 3, we can �nd events A;B � 
 such that A \ B;BnA;AnB 6= ?.
Consider an initial belief state p such that p(A \ B) = 1=4 and p(AnB) = 3=4, and
de�ne the Je¤rey input I := fp0 : p0(B) = 1=2g. Note that (p; I) 2 D. What is the
new belief state pI?
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First, note that I is weakly silent on the probability of A \ B given B. So, by
Strong Conservativeness, pI(A \ BjB) = p(A \ BjB) (using the fact that p(B) 6= 0
and that pI(B) 6= 0 by Responsiveness), i.e., (*) pI(AjB) = 1.

Similarly, (**) pI(AjB) = 1. (This is trivial if A \ B = B, and can otherwise be
shown like (*), using the fact that I is weakly silent on the probability of A\B given
B.) By (*) and (**), pI(A) = 1.

Further, I is weakly silent on the probability of A \ B given A, so that we
have pI(A \ BjA) = p(A \ BjA), by Strong Conservativeness (using the fact that
pI(A); p(A) 6= 0). Since pI(A) = 1 and given the de�nition of p, it follows that
pI(B) = 1=4. But, by Responsiveness, pI(B) = 1=2, a contradiction. �

A.3 Proposition 2

We start by o¤ering a convenient reformulation of strong silence (we leave the proof
to the reader).

Lemma 7 For all inputs I and all events ? ( A ( B � Supp(I), I is strongly silent
on the probability of A given B if and only if
� I contains a belief state p� with p�(A); p�(BnA) 6= 0, and
� for every such p� 2 I and every � 2 [0; 1], I contains the belief state p0 which
coincides with � on the probability of A given B and with p� outside that con-
ditional probability, formally

p0 2 I where p0 = p�(�jA)�p�(B) + p�(�jBnA)(1� �)p�(B) + p�(� \B):

Proof of Proposition 2. Consider I � P and ? ( A ( B � Supp(I).
(a) First suppose IAjB = P. Consider any � 2 [0; 1]. As ? ( A ( B, there

exists a belief state p0 such that p0(B) 6= 0 and p0(AjB) = �. As IAjB = P, we have
p0 2 IAjB, so that I contains a p� (with p�(B) 6= 0) such that p�(AjB) = p0(AjB), i.e.,
such that p�(AjB) = �, as required for weak silence.

Now assume that I is weakly silent on the probability of A given B. Trivially,
IAjB � P. We show that P � IAjB. Let p0 2 P. If p0(B) = 0, then clearly p0 2 IAjB.
Otherwise, by weak silence, applied to � := p0(AjB), I contains a p� such that
p�(B) 6= 0 and p�(AjB) = p0(AjB), so that p0 2 IAjB. �

(b) First, in the trivial case in which I contains no p0 such that p0(A); p0(BnA) 6= 0,
the equivalence holds because strong silence is violated (see Lemma 7) and moreover
I
AjB 6= I because IAjB but not I contains a belief state p

0 such that p0(A); p0(BnA) 6= 0.
Now assume the less trivial case that I contains a ~p such that ~p(A); ~p(BnA) 6= 0.

First suppose I
AjB = I. To show strong silence, consider any � 2 [0; 1] and any

p� 2 I with p�(A); p�(BnA) 6= 0. By Lemma 7, it su¢ ces to show that the belief
state p0 which coincides with p� outside the probability of A given B and satis�es
p0(AjB) = � belongs to I. Clearly, p0 belongs to I

AjB. Hence, as I = IAjB, p
0 belongs

to I.
Conversely, assume that I is strongly silent on the probability of A given B.

Trivially, I � I
AjB. To show the converse inclusion, suppose that p

0 2 I
AjB. Then

there exists p� 2 I such that p0 and p� coincide outside the probability of A given B
and such that p�(C) 6= 0 for all C 2 fA;BnAg with p0(C) 6= 0.
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We distinguish two cases. First suppose p�(A); p�(BnA) 6= 0. Then p0(B) =
p�(B) 6= 0. By I�s strong silence on the probability of A given B, I contains a belief
state ~p (with ~p(B) 6= 0) which satis�es ~p(AjB) = p0(AjB) and coincides with p�
outside the probability of A given B. Note that, since p�(A); p�(BnA) 6= 0, there can
be only one belief state that coincides with p� outside the probability of A given B
and such that the probability of A given B takes a given value. Therefore, p0 = ~p,
and so p0 2 I, as had to be shown.

Next assume the special case that p�(C) = 0 for at least one C 2 fA;BnAg. As
p�(C) = 0 ) p0(C) = 0 for each C 2 fA;BnAg and as p0(A) + p0(BnA) = p0(B) =
p�(B) = p�(A) + p�(BnA), it follows that p0(C) = p�(C) for each C 2 fA;BnA;Bg.
This and the fact that p0(�jC) = p�(�jC) for all C 2 fA;BnA;Bg for which p0(C)
(= p�(C)) is non-zero imply that p0 = p�. So again p0 2 I. �

A.4 On which conditional probabilities is each kind of learnt input
strongly silent?

As a key step towards proving our theorems, this section determines on which con-
ditional probabilities learnt inputs of the four kinds (Bayesian, Je¤rey, dual-Je¤rey,
and Adams) are strongly silent. Instead of discussing Bayesian inputs explicitly, we
turn directly to Je¤rey inputs, since they generalize Bayesian inputs.

Lemma 8 For all Je¤rey inputs I (of learning a new probability distribution on a
partition B) and all events ? ( A ( B � Supp(I), I is strongly silent on the
probability of A given B if and only if B � B0 for some B0 2 B.

Proof. Let I, B, A, and B be as speci�ed, and let (�B)B2B be the learnt probability
distribution on B. First, if B � B0 for some B0 2 B, then I is strongly silent on the
probability of A given B, as one can easily check, using Lemma 7. Conversely, suppose
that B 6� B0 for all B0 2 B. For each D � 
, we write BD := fB0 2 B : B0 \D 6= ?g.
Note that BB = BA [ BBnA, where #BA � 1 (as A 6= ?), #BBnA � 1 (as BnA 6= ?),
and #BB � 2 (as otherwise B would be included in a B0 � B). It follows that there
are B0 2 BA and B00 2 BBnA with B0 6= B00. Note that I contains a p� such that
p�(B0 \ A) = �B0 and p�(B00 \ (BnA)) = �B00 . Since each of B0 and B00 has a non-
empty intersection with B, and hence with Supp(I) (� B), we have �B0 ; �B00 6= 0.
Now p�(B00 \A) = p�(B00 \B) = 0, since

p�((B00 \A) [ (B00 \B)) = p�(B00)� p�(B00 \ (BnA)) = �B00 � �B00 = 0.

By Lemma 7, if I were strongly silent on the probability of A given B, I would
also contain the belief state p0 which coincides with p� outside the probability of
A given B and satis�es p0(AjB) = 1; i.e., I would contain the belief state p0 :=
p�(�jA)p�(B) + p�(� \B). But this is not the case because

p0(B00) = p�(B00jA)p�(B) + p�(B00 \B) = 0 6= �B00 ,

where the second equality uses the fact that p�(B00 \A) = p�(B00 \B) = 0, which we
have shown. Hence, I is not strongly silent on the probability of A given B. �

Next, we determine on which conditional probabilities dual-Je¤rey inputs are
strongly silent.
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Lemma 9 For all dual-Je¤rey inputs I (of learning a new conditional probability
distribution given a partition C) and all events ? ( A ( B � 
 (= Supp(I)), I
is strongly silent on the probability of A given B if and only if A = [C2CAC and
B = [C2CBC for some sets ? ( CA ( CB � C.

Proof. Let I, C, A, and B be as speci�ed, and let (�C)C2C be the learnt conditional
probability distribution given C. First, if A = [C2CAC and B = [C2CBC for some
sets ? ( CA ( CB � C, then I is strongly silent on the probability of A given B, as
one can check, using Lemma 7. Conversely, suppose that one cannot express A, B as
such unions. Consider the belief state p� := 1

#C
P
C2C �

C . Clearly, p� 2 I. If I were
strongly silent on the probability of A given B, then I would also contain the belief
state p0 which coincides with p� outside the probability of A given B and satis�es
p0(AjB) = 1, i.e., the belief state

p0 := p�(�jA)p�(B) + p�(� \B):

But I fails to contain p0, for the following reason. We distinguish two cases.
Case 1 : There is no set CA � C such that A = [C2CAC. Then there exists

a C 2 C such that C \ A;CnA 6= ?. By the de�nition of p0 (and the fact that
C \A;CnA 6= ?), p0(C \A) > p�(C \A) and 0 < p0(CnA) � p�(CnA). This implies
that p0(C); p�(C) 6= 0 and p0(AjC) > p�(AjC). So, as p�(�jC) = �C (by p� 2 I),
p0(�jC) 6= �C , and therefore p0 62 I.

Case 2 : There is a set CA � C such that A = [C2CAC. Then there is no CB � C
such that B = [C2CBC; and so, there exists C 2 C such that C\B;CnB 6= ?. As A is
included in B and a union of sets in C, C\A = ?. Note that p�(C\B); p�(CnB) 6= 0
(as C\B;CnB 6= ? and by de�nition of p�); further, that p0(C\B) = p0(C\(BnA)) =
0 (where the �rst equality holds because C \ A = ? and the second by de�nition of
p0); and �nally, that p0(C) = p0(C \ B) + p0(CnB) = 0 + p�(C \ B) 6= 0. Since
p0(C); p�(C) 6= 0, the conditional belief states p0(�jC) and p�(�jC) are de�ned; they
di¤er since p0(C \ B) = 0 but p�(C \ B) 6= 0. Hence, as p�(�jC) = �C (by p� 2 I),
p0(�jC) 6= �C , and so p0 62 I. �

We now turn to Adams inputs. Before we show on which conditional probabilities
they are strongly silent, we prove two useful lemmas.

Lemma 10 Every Adams input I is convex, i.e., if p0; p00 2 I and � 2 [0; 1], then
�p0 + (1� �)p00 2 I.

Proof. Let I, p0; p00 and � be as speci�ed, and �x any family (�CB)
C2C
B2B generating

I. To show that q := �p0 + (1 � �)p00 2 I, we consider any B 2 B and C 2 C such
that q(C) 6= 0. We have to prove that q(BjC) = �CB. Note that

q(BjC) = q(B \ C)
q(C)

=
�p0(B \ C) + (1� �)p00(B \ C)

�p0(C) + (1� �)p00(C) : (20)

There are three cases:
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� First let p0(C) = 0. Then also p0(B \ C) = 0; and so by (20), q(BjC) =
p00(B\C)
p00(C) = p00(BjC), which equals �CB, as p00 2 I.

� Now let p00(C) = 0. Then also p00(B\C) = 0; hence by (20), q(BjC) = p0(B\C)
p0(C) =

p0(BjC), which equals �CB, as p0 2 I.
� Finally, let p0(C); p00(C) 6= 0. Then p0(BjC) = p00(BjC) (= �CB), i.e.,

p0(B\C)
p0(C) =

p00(B\C)
p00(C) . So there exists � > 0 such that

p00(B \ C) = �p0(B \ C) and p00(C) = �p0(C);

so that, by (20), q(BjC) = p0(B\C)
p0(C) , which equals �

C
B. �

Lemma 11 If I is an Adams input, (�CB)
C2C
B2B is its canonical family, pB 2 P with

Supp(pB) � B for all B 2 B, and �C � 0 for all C 2 C where
P
C2C �C = 1, then I

contains

p �
X

C2C;B2B
�C�

C
BpB

0@=X
C2C

�C
X
B2B

�CBpB =
X
C2C

�C
X

B2B:B�C
�CBpB

1A :
Proof. The lemma follows from the convexity of Adams inputs (see Lemma 10),

since each pB belongs to I and the coe¢ cients �C�
C
B satisfyX

C2C;B2B
�C�

C
B =

X
C2C

�C
X
B2B

�CB =
X
C2C

�C � 1 = 1. �

The next lemma determines on which conditional probabilities Adams inputs are
strongly silent, combining insights from Lemmas 8 and 9 about Je¤rey and dual-
Je¤rey inputs. In fact, the next lemma implies Lemma 9 if 
 is �nite �not surpris-
ingly, since, for �nite 
, Adams inputs generalize dual-Je¤rey inputs.

On a �rst reading of the next lemma, the reader may assume that B \ C = ?, so
that DA = DB = [D2B\CD = ?.

Lemma 12 Consider an Adams input I and let (�CB)
C2C
B2B be the canonical family

generating it (as de�ned in Lemma 5). For all events ? ( A ( B � 
 (= Supp(I)),
I is strongly silent on the probability of A given B if and only if
(a) either B � B0 for some B0 2 B,
(b) or A = ([C2CAC)[DA and B = ([C2CBC)[DB for some CA � CB � Cn(B\C)

and some DA � DB � [D2B\CD.25

Proof. Let I, (�CB)
C2C
B2B, A and B be as speci�ed. For each C 2 C let BC := fB 2

B : B � Cg. Also, let D := B \ C (note that jDj � 1) and let 
� := 
n([D2DD).
First, if A and B take the form (a) or (b), then A is strongly silent on the

probability of A given B, as one can verify, using Lemma 7.

25Since (�CB)
C2C
B2B is canonical, the set B \ C is either empty or a singleton set fD�g. So, the union

[D2B\CD is either ? or D�. In the �rst case the requirement �DA � DB � [D2B\CD�reduces to
DA = DB = ?, and in the second case it reduces to DA � DB � D�.
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Now suppose I is strongly silent on the probability of A given B. Suppose, for
a contradiction, that A and B are neither of the form (a) nor of the form (b). We
derive a contradiction in each of the following cases. The proof will sometimes use a
uniform distribution on a non-empty event B0 � 
; denoted uniformB0 and de�ned
by uniformB0(A) =

jA\B0j
jB0j for all A � 
. To be precise, uniformB0 is only de�ned

if jB0j < 1, and thus the proof given here is literally valid only if 
 is �nite. To
extend the proof to general (countable) 
, it su¢ ces to replace each uniformB0 by a
distribution in P with support B0.

Case 1 : There does not exist any C 2 CnD such that C \ A;CnA 6= ?. In other
words, A = ([C2CAC) [ DA for some CA � CnD and some DA � [D2DD. Since
condition (b) does not hold, B cannot take the form ([C2CBC)[DB with CB � CnD
and DB � [D2DD. In other words, there exists C 2 CnD such that C \B;CnB 6= ?.
Since B \ C;CnB 6= ? and since the set BC (which partitions C) has at least two
members, there are distinct bB; eB 2 BC such that bB \B; eBnB 6= ?.

Note that since B 6� C and A � B, we have A 6� C, and so A\C = ?. Hence, as
A 6= ?, there exists C� 2 CnfCg such that A \ C� 6= ?. (Possibly C� 2 D, in which
case A \ C� can di¤er from C�.)

Now, for each B0 2 BC , we choose an aB0 2 B0, where a bB 2 bB \ B (6= ?) and
a eB 2 eBnB (6= ?). By Lemma 11 (applied with �C = �C� =

1
2 and �C0 = 0 for all

C 0 2 CnfC;C�g), I contains

p� :=
1

2

X
B02BC

�CB0�aB0 +
1

2

X
B02BC�

�C
�

B0 uniformB0 .

Hence, since I is strongly silent on the probability of A given B, and since p�(A) 6= 0
(as A \ C� 6= ?) and p�(BnA) 6= 0 (as a bB 2 BnA), Lemma 7 implies that I also
contains the belief state p0 which satis�es p0(AjB) = 1 and coincides with p� outside
the probability of A given B, i.e., the belief state

p0 := p�(�jA)p�(B) + p�(� \B):

Now

p0( bB) = p�( bBjA)p�(B) + p�( bB \B) = 0� p�(B) + 0 = 0;
p0( eB) = p�( eBjA)p�(B) + p�( eB \B) = 0� p�(B) + p�(a eB) 6= 0:

Note that p0(C) � p0( eB) > 0 and p0( bBjC) = 0 6= �CbB, a contradiction since p0 2 I. �
Case 2 : There exists C 2 CnD such that C \A;CnA 6= ?.
Subcase 2.1 : (BnA) \ C = ? (i.e., A \ C = B \ C). So, as A ( B, there exists

C� 2 C such that (BnA) \ C� 6= ?. (Possibly C 2 D.) Hence, there exists B� 2 BC�
such that B� \ (BnA) 6= ?. By Lemma 11 (applied with �C� = �C = 1

2 and �C0 = 0
for all C 0 2 CnfC�; Cg), I contains

p� : =
1

2

0@�C�B�uniformB�\(BnA) +
X

B02BC�nfB�g
�C

�
B0 uniformB0

1A
+
1

2

X
B02BC

�CB0uniformB0 :
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So, because I is strongly silent on the probability of A given B (and because
p�(A); p�(BnA) 6= 0), by Lemma 7 I also contains the belief state p0 that satis�es
p0(AjB) = 1 and coincides with p� outside the probability of A given B, i.e., the
belief state

p0 := p�(�jA)p�(B) + p�(� \B):
For all eB 2 BC such that eB\A 6= ?, we have eB\A = eB\B and (0 <) p�(A) < p�(B),
so that

p�( eBjA) = p�( eB \A)
p�(A)

>
p�( eB \B)
p�(B)

= p�( eBjB),
and hence

p0( eB) = p�( eBjA)p�(B) + p�( eB \B)
> p�( eBjB)p�(B) + p�( eBnB) = p�( eB \B) + p�( eBnB) = p�( eB).

Further, for all eB 2 BC such that eB \A ( eB \B) is empty, we have
p0( eB) = p�( eBjA)p�(B) + p�( eB \B) = 0� p�(B) + p�( eB) = p�( eB).

As we have shown, p0( eB) � p�( eB) for all eB 2 BC , where some inequalities hold
strictly and some hold as equalities. For every bB 2 BC such that p0( bB) = p�( bB), we
have

p0( bBjC) = p0( bB)P eB2BC p0( eB) <
p�( bB)P eB2BC p�( eB) = p�( bBjC) = �CbB.

So, p0( bBjC) 6= �CbB, a contradiction since p0 2 I.
Subcase 2.2 : (BnA) \ C 6= ? and no set in BC includes B \ C. Since (BnA) \ C

and A \ C are both non-empty, and since the union of these two sets, B \ C, is not
included in any set in BC (hence, intersects with at least two sets in BC), there exist
distinct B1; B2 2 BC such that

? 6= B1 \ ((BnA) \ C) ( = B1 \ (BnA)),
? 6= B2 \ (A \ C) ( = B2 \A).

Now, for each B0 2 BC , we �x an aB0 2 B0 such that aB1 2 B1 \ (BnA) (6= ?) and
aB2 2 B2 \A (6= ?). By Lemma 11, I contains the probability measure

p� :=
X
B02BC

�CB0�aB0 .

So, since I is strongly silent on the probability of A given B (and since p�(A) 6= 0 as
aB2 2 A and since p�(BnA) 6= 0 as aB1 2 BnA), by Lemma 7 I also contains the belief
state p0 which satis�es p0(AjB) = 1 and coincides with p� outside the probability of
A given B, i.e., the belief state

p0 := p�(�jA)p�(B) + p�(� \B):

We have

p0(B2) = p�(B2jA)p�(B) + p�(B2 \B) = 0� p�(B) + 0 = 0;
p0(C) = p�(CjA)p�(B) + p�(C \B) = 1� p�(B) + p�(CnB) = p�(C) = 1.
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So, p0(B2jC) = 0 6= �CB2 , a contradiction since p
0 2 I.

Subcase 2.3 : (BnA) \C 6= ? and some B� 2 BC includes B \C. Since condition
(a) does not hold, B 6� B�. So, B 6= B \ C, i.e., BnC 6= ?. Hence there arebC 2 CnfCg and bB 2 B bC such that bB \B 6= ?; hence, bC \B 6= ?. (Possibly bB = bC.)

Subsubcase 2.3.1 : A \ bC 6= ?. By Lemma 11, the belief state
p� : =

1

2

0@�CB�uniformB�\A +
X

B02BCnfB�g
�CB0uniformB0

1A
+
1

2

X
B02B bC

�
bC
B0uniformB0

belongs to I. Since p� belongs to I which is strongly silent on the probability of A
given B (and since p�(A); p�(BnA) 6= 0), I also contains the belief state p0 for which
p0(AjB) = 0 and which coincides with p� outside the probability of A given B,

p0 := p�(�jBnA)p�(B) + p�(� \B)):

Notice that

p0(B�) = p�(B�jBnA)p�(B) + p�(B� \B)) = 0� p�(B) + 0 = 0;
p0(C) = p�(CjBnA)p�(B) + p�(C \B)) = 0� p�(B) + p�(CnB�) = p�(CnB�);

where the latter is positive since B� 6= C. So, p0(B�jC) = 0 6= �CB� , a contradiction
as p0 2 I.

Subsubcase 2.3.2 : A \ bC = ?. We re-de�ne p� by replacing �unformB�\A�with
�uniformB�\(BnA)�in the previous de�nition of p�. Again, p� 2 I, by Lemma 11. So,
since I is strongly silent on the probability of A given B (and since p�(A); p�(BnA) 6=
0), I also contains the belief state p0 for which p0(AjB) = 1 and which coincides with
p� outside the probability of A given B,

p0 = p�(�jA)p�(B) + p�(� \B):

Notice that

p0(B�) = p�(B�jA)p�(B) + p�(B� \B) = 0� p�(B) + 0 = 0;
p0(C) = p�(CjA)p�(B) + p�(C \B) = 0� p�(B) + p�(C \B) = p�(C \B);

where again the latter is positive. So, p0(B�jC) = 0 6= �CB� , a contradiction since
p0 2 I. �

A.5 Theorems 1 and 2

Using our previous lemmas, we �nally prove our central characterization of the four
revision rules (Theorems 1 and 2).

Proof of Theorems 1 and 2. It su¢ ces to consider Je¤rey�s, the dual-Je¤rey, and
Adams�s rules, since Bayes�s rule is extended by Je¤rey�s. We �rst prove one direction
of implication of both theorems, and then we prove the other direction.
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Part 1 : First, we consider a responsive and conservative revision rule on one of
the domains DJe¤rey, Ddual-Je¤rey, and DAdams. We show that the rule is Je¤rey�s,
the dual-Je¤rey, or Adams�s rule, respectively. We distinguish between the three
domains.

Je¤rey : Suppose (p; I) 2 DJe¤rey, say I = fp0 : p(B) = �B 8B 2 Bg. Then pI is
given by Je¤rey�s rule, because we may expand pI as

pI =
X

B2B:pI(B) 6=0
pI(�jB)pI(B); (21)

where pI(B) reduces to �B by Responsiveness, and pI(�jB) reduces to p(�jB) by
Conservativeness. (Note that, by Lemma 8, I is strongly silent on the probability
given B of any event strictly between ? and B.)

Dual-Je¤rey : Suppose (p; I) 2 Ddual-Je¤rey, say I = fp0 : p0(�jC) = �C 8C 2 C
such that p0(C) 6= 0g. Then pI is given by the dual-Je¤rey rule, because we may
expand pI as

pI =
X

C2C:pI(C) 6=0
pI(�jC)pI(C),

where pI(�jC) reduces to �C by Responsiveness, and pI(C) reduces to p(C) by Con-
servativeness. (Note that, by Lemma 9, I is strongly silent on the probability of C
given 
 if C 6= 
.)

Adams: Suppose (p; I) 2 DAdams, say I = fp0 : p0(BjC) = �CB 8B 2 B 8C 2 C
such that p0(C) 6= 0g. Then pI is given by Adams�s rule, because we may expand pI
as

pI =
X

B2B;C2C:pI(B\C) 6=0
pI(�jB \ C)pI(BjC)pI(C),

where pI(BjC) reduces to �CB by Responsiveness, pI(C) reduces to p(C) by Conser-
vativeness (since, by Lemma 12, I is strongly silent on the probability of C given 
 if
C 6= 
), and pI(�jB\C) reduces to p(�jB\C) by Conservativeness (since, by Lemma
12, I is strongly silent on the probability given B \ C of any event strictly between
? and B \ C). �

Part 2 : Conversely, we now show that Je¤rey�s, the dual-Je¤rey, and Adams�s
rules are responsive and conservative. Responsiveness is obvious. To establish Conser-
vativeness, consider any (p; I) in the rule�s domain (DJe¤rey or Ddual-Je¤rey or DAdams)
and any events ? ( A ( B � Supp(I) such that I is strongly silent on the probability
of A given B and pI(B); p(B) 6= 0. We have to show that pI(AjB) = p(AjB). We
again distinguish between the three rules.

Je¤rey : Suppose the rule in question is Je¤rey�s rule. Then the input takes the
form I = fp0 : p0(B) = �B 8B 2 Bg for some learnt probability distribution (�B)B2B
on some partition B. As I is strongly silent on the probability of A given B, by
Lemma 8 B � B0 for some B0 2 B. It follows that pI(AjB) = p(AjB), because

pI(AjB) =
pI(A)

pI(B)
=
p(AjB0)�B0
p(BjB0)�B0

=
p(A)=p(B0)

p(B)=p(B0)
= p(AjB),

where the second equality holds by the de�nition of Je¤rey revision.
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Dual-Je¤rey : Consider the dual-Je¤rey rule. Then I is a dual-Je¤rey input, of
the form I = fp0 : p0(�jC) = �C 8C 2 C such that p0(C) 6= 0g for some (unique)
conditional probability distribution (�C)C2C given some partition C. By I�s strong
silence on the probability of A given B and Lemma 9, A = [C2CAC and B = [C2CBC
for some sets ? ( CA ( CB � C. We have pI(AjB) = p(AjB), because

p(AjB) =
p(A)

p(B)
=

P
C2CA p(C)P
C2CB p(C)

;

pI(AjB) =
pI(A)

pI(B)
=

P
C2CA pI(C)P
C2CB pI(C)

,

where, as one can easily verify, each pI(C) equals p(C).
Adams: Consider Adams�s rule. Then I is an Adams input, of the form I = fp0 :

p0(BjC) = �CB 8B 2 B 8C 2 C such that p0(C) 6= 0g, where (�CB)C2CB2B is a conditional
probability distribution on some partition B given another C. By Lemma 5, we may
assume that the family (�CB)

C2C
B2B is the canonical one for I, i.e., that B re�nes C and

B \ C is empty or singleton. By I�s strong silence on the probability of A given B
and Lemma 12, there are only two cases:
(a) B � B0 for some B0 2 B, or
(b) A = ([C2CAC) [DA and B = ([C2CBC) [DB for some CA � CB � Cn(B \ C)

and some DA � DB � [D2B\CD. (So, as B\C is empty or a singleton set fDg,
we have DA = DB = ? or DA � DB � D, respectively.)

In case (a), we have pI(AjB) = p(AjB), because, writing C 0 for the member of C
which includes B0, we have

pI(AjB) =
pI(A)

pI(B)
=
p(AjB0)�C0B0p(C 0)
p(BjB0)�C0B0p(C 0)

=
p(AjB0)
p(BjB0) = p(AjB).

In case (b), we also have pI(AjB) = p(AjB), this time because

p(AjB) =
p(A)

p(B)
=

P
C2CA p(C) + p(DA)P
C2CB p(C) + p(DB)

;

pI(AjB) =
pI(A)

pI(B)
=

P
C2CA pI(C) + pI(DA)P
C2CB pI(C) + pI(DB)

,

where, as one can easily verify, each pI(C) equals p(C), and pI(DA) = p(DA), and
pI(DB) = p(DB). For instance, to see why pI(DA) = p(DA), recall that either
DA = ? or DA � D (2 B\C). If DA = ?, then clearly pI(DA) = p(DA). If DA � D,
then pI(DA) = p(DAjD)�DDp(D) = p(DA) (where, as usual, �p(DAjD)�DDp(D)� is
de�ned as 0 if p(D) = 0). �
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