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Abstract

Rational choice theorists and deontic logicians both study actions, yet using
very different approaches and tools. This paper introduces some choice-
theoretic concepts – feasible options, choice contexts, choice functions, rank-
ings of options, and reasons structures – into deontic logic. These concepts
are used to define a simple ‘choice-theoretic’ language for deontic logic, and
four ‘choice-theoretic’ semantics for that language, called basic, behavioural,
ranking-based and reason-based semantics, respectively. We compare these
semantics in terms of the strength of their entailment relations, and charac-
terize precisely the ‘gaps’ in strength between weaker and stronger ones of
these semantics.

1 Introduction

Formal decision theory, or choice theory, provides us with various models of
an agent’s choice behaviour, for instance models in terms of a ranking of
options (e.g., Samuelson 1948, Sen 1993, Bossert and Suzumura 2009) or in
terms of a reasons structure (Dietrich and List 2016). While choice theory
is more often interpreted descriptively, as studying actual choice, we here
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interpret it purely normatively, as studying rational or moral choice. So for us
a ranking of options will capture normative comparisons, not preferences, and
a reasons structure will capture normative reasons, not motivating reasons.
The choice-theoretic approach to morality or more broadly normativity has
recently received much attention, in terms of both ranking-based models
(Brown 2011) and reason-based models (Dietrich and List 2017). Ranking-
based models focus on consequentialist and universalist morality, whereas
reason-based models also address non-consequentialism and relativism.

Choice theory shares its focus on action with another field: deontic logic,
the logic of obligations and permissions.4 Yet there is a striking disconnect
between these fields. Each uses its own tools and concepts. Choice the-
orists use objects such as options, choice contexts, rankings of options, or
reasons structures. These objects are largely absent from standard syntax
and semantics of deontic logic. Deontic logicians instead use objects such as
possible worlds, modal operators and accessibility relations.

There are of course analogies between choice theory and deontic logic.
One might compare options in choice theory with worlds in deontic logic.
One might compare rankings of options with rankings of worlds – when the
latter are introduced in deontic logic, as done occasionally.5 And one might
compare feasible options offered by a choice context with agentially possible
worlds – when agential (or causal) possibility is introduced in deontic logic
as a second modality besides moral permissibility.

But these analogies do not go very far and are ultimately problematic.
The main problem is that worlds differ considerably from options. Worlds
capture everything. Yet choice options must be specified coarsely enough to
be repeatable in different choice contexts, as choice theorists insist. Other-
wise much of choice theory would become trivial or vacuous.6 Worlds are by

4For an introduction to standard modal and deontic logics, see Priest (2001) and Gab-
bay (2013). Less standard branches or cousins of deontic logic include preference logics
(e.g., Hanson 2001, Liu 2010), and logics of action in the form of STIT logics or dynamic
logics (for a review see Segerberg et al. 2013).

5A ranking of worlds might be used to then define a world as permissible if it ranks
highest among all worlds, or among those worlds which are agentially possible from the
perspective of the actual world. Rankings of works are used in preference logics (e.g., Liu
2010).

6Choice made in one context could otherwise never be related to choice in another.
Questions of cross-context robustness or consistency of behaviour could thus not even
be addressed. More formally, any pattern of choices across contexts could trivially be
explained in terms of some ranking of the options, since it is easy to rank the options such
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definition unrepeatable: they describe everything, not just the action chosen
by the agent, but also the full choice context, and so each world is compat-
ible with only one choice context. The point could be elaborated, but we
hope readers have been convinced (if they weren’t already) that mainstream
deontic logic is largely disconnected from mainstream choice theory in that
it contains no direct counterparts of some basic choice-theoretic objects, and
vice versa.

Our goal is to show how deontic logic would look like were it directly
guided by choice theory. That is, we aim for ‘choice-theoretic deontic logic(s)’.
We first define a simple propositional language for deontic logic, inspired by
choice theory. Some of its atomic sentences, the choice sentences, corre-
spond to options in choice theory. We then introduce four possible-worlds
semantics for this language: behavioural, ranking-based, reason-based, and
basic semantics, respectively. Each of them will explicitly specify (i) which
option the agent chooses and (ii) what the choice context is. This puts some
basic choice-theoretic concepts at nonecentre stage. The four semantics dif-
fer in how they capture the deontic modality: here behavioural semantics
uses a choice function (the most general object by which choice theorists
capture behaviour), ranking-based semantics uses a ranking of options (not
one of worlds), reason-based semantics uses a reasons structure, and basic
semantics uses an accessibility relation between worlds. So the first three se-
mantics capture the deontic modality using choice-theoretic constructs, while
the fourth semantics, basic semantics, uses an accessibility relation, making
that logic slightly less ‘choice-theoretic’.

Different theorems will establish the exact relationships between our four
logics. In a nutshell, the behavioural, ranking-based and reason-based log-
ics each strengthen the basic logic, by validating more sentences and more
inferences.

In sum, we make the choice-theoretic and logical approaches to norma-
tivity mutually comparable by recasting one approach in the framework of
the other, i.e., by recasting choice-theoretic models in logical terms. This
uncovers the implicit deontic commitments of each choice-theoretic model.
Is such a model for instance committed to the principle ‘ought implies can’?
Where does it agree or disagree with standard deontic logic?

that in any choice context the agent chooses a top-ranking option among the currently
feasible options. Indeed it suffices to rank each option which is chosen (in the only context
where it is feasible) above all options which are not chosen (in that context).
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2 Choice-theoretic models of morality

This section recapitulates the choice-theoretic background of this paper. Af-
ter some preliminaries (Section 2.1), we define the three choice-theoretic mod-
els on which three of our semantics will later be based, respectfully (Sections
2.2-2.4). We shall be brief; for details see Dietrich and List (2017).

2.1 Preliminaries: options and choice contexts

Before defining the three choice-theoretic models, we here introduce what
they have in common, i.e., options and contexts.

Let X be a fixed non-empty set: the set of all options an agent might
ever encounter. A (choice) context is a situation in which an agent has to
choose between certain options in X. Formally, a context is an object K
which comes with a non-empty set of (‘feasible’) options denoted [K] ⊆ X
and called the (choice) menu of K.

Some dilemma-type context K might offer the menu [K] = {k, l} where
option k consists in killing a dictator and thereby ending a regime of violent
terror, while option l consists in not killing the dictator and thereby leaving
the regime in place.

Let K be a fixed set of contexts: all contexts deemed possible. Different
contexts in K might have overlapping menus, so that the same option belongs
to the menu [K] of different contexts K in K.

Choice theorists often identify contexts K with their choice menus [K], by
defining a context directly as a menu of feasible options, i.e., a non-empty set
of options K ⊆ X; the notation [K] is then no longer needed. The context of
our kill-or-not example would thus be defined as the set K = {k, l} containing
the two feasible options. Such a ‘thin’ individuation of contexts is compatible
with our general notion of contexts: it is a special case, obtained by letting
K = [K] for all contexts K in K.

But we also allow richer notions of context. Contexts in K could be pairs
K = (Y, λ) of a choice menu Y = [K] and an environmental parameter
λ describing the environment in which the choice takes place. Our kill-or-
not context would then be specified not as K = {k, l}, but as a pair K =
{{k, l}, λ), where λ carries some environmental information, say whether
there currently is war time or peace time. More generally, λ might capture
the cultural environment, or the history preceding the choice, or information
about the agent such as his identity, information or awareness. The point
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of adding environmental information to contexts is that such information
might have moral importance, by affecting which options are permissible. For
instance, certain forms of relativism are sensitive to the cultural environment
relevant; moral egoism is sensitive to the agent’s identity; and whether killing
the dictator is right in our example might (under some moral theories) depend
on whether there is war time or peace time, as this might affects the status
and gravity of killing.

2.2 Representing morality by a rightness function

The most basic and minimal way to model a moral theory consists in specify-
ing a rightness function: a function R which to every choice context K in K
assigns a set of feasible options R(K) ⊆ [K], interpreted as the right or per-
missible options in context K. Each moral theory has its rightness function.
For instance, under classical utilitarianism R(K) = {x ∈ [K] : x generates
at least as much total happiness as any other feasible option y ∈ [K]}. In
our kill-or-not context, standard consequentialist theories would deem killing
right, so that R(K) = {k}, while some deontological theories which empha-
size the asymmetry between action and omission would deem not killing
right, so that R(K) = {l}.

A rightness function R is formally the same object as a choice function,
except that choice functions by definition never return an empty set while
we allow that in some contexts K there is a moral dilemma, i.e., R(K) = ∅.

A rightness function R fully captures a moral theory’s deontic content,
i.e., the theory’s body of permissibility verdicts. By contrast, R fails to
capture the reasons or justifications which a theory offers as the basis of its
permissibility verdicts. So R captures what is right, in various situations, not
why it is right. We now turn to two other representations of a moral theory,
ranking-based and reason-based representations, which each go beyond a
theory’s deontic content, though in very different ways.

2.3 Representing morality by a ranking of options

Many moral theories can be represented not just by a rightness function, but
also by a ranking of the options, i.e., a binary relation � on X where x � y is
usually taken to mean that option x is at least as good as option y. Different
theories rank options differently; for instance classical utilitarianism ranks
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options in terms of total happiness, so that x � y if and only if x generates
at least as much total happiness as y.

Any such ranking � implies a particular rightness function R. This right-
ness function deems a feasible option in a context K to be right just in case
it outranks all feasible options:

R(K) = {x ∈ [K] : x � y for all y ∈ [K]}.

The ranking is said to explain R and to be a (ranking-based) explanation of R.
Not every rightness function R is explicable by a ranking, and even when such
an explanation exists it need not be unique. An extensive choice-theoretic
literature investigates under which conditions on R there exist ranking-based
explanations, sometimes with extra requirements on the ranking such as tran-
sitivity.7

There are at least three reasons for why many important moral theories
are not representable by a ranking of the options. First, the theory need
not build on any notion of (relative) goodness: it need not have axiological
foundations. Second, even if the theory builds on goodness comparisons,
a ranking of options need not help since goodness might come from the
option-context combination rather than the option alone: the theory might
be non-consequentialist. Third and more subtly, even if the theory is conse-
quentialist, it might deem an option x better than another y in one context
while deeming y better than x in another context: the theory might be
relativist. This was quick. We shall return to non-consequentialism and
relativism in the next section. For now we retain that rankings of options
can represent some but not all moral theories; and more formally, they can
explain some but not all rightness functions.

2.4 Representing morality by a reasons structure

Many moral theories are representable by a reasons structure. A reasons
structure specifies ‘what matters’ and ‘how it matters’: it specifies (i) which

7Giving ranking-based explanations becomes trivially possible (but unilluminating) if
one is permitted to re-individuate the options in X (and recast the rightness function
accordingly). After sufficiently enriching the options, they will be so specific that each is
feasible in just one context; one can then explain choice trivially by ranking each option
that is chosen (in the only context where it is feasible) above each option that is not chosen
(see Dietrich and List 2017 for technical details). To avoid triviality, we keep X fixed and
thus forbid option re-individuation.
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properties are normatively relevant in each context, and (ii) how combina-
tions of properties are weighed relative to one other. To make this precise,
we fist need the concept of property. Properties are features that options x
may or may not have in contexts K where they are feasible. For instance, an
option may have the property that someone dies, or that someone is made
happy, or that the option is the only feasible one in the context. So prop-
erties are features of option-context pairs. Formally, an option-context pair
is a pair (x,K) where K is a context in K and x is a feasible option in
[K].8 A property is some object p which determines a set of option-context
pairs [p], the extension of p. When (x,K) ∈ [p] we say that (x,K) has or
satisfies the property, or that x has or satisfies the property in context K.
One might specify a property purely extensionally, by defining p as the set
option-context pairs satisfying it; then p = [p]. But we also allow an inten-
sional notion of properties. Here properties do not reduce to their extensions,
but somehow go beyond. Distinct properties p and q can then be extension-
ally equivalent ([p] = [q]) and yet potentially play different moral roles. For
instance the properties p of a maximal number of happy people and q of a
minimal number of unhappy people differ only intensionally.

A property p is called

• a (pure) option property if its satisfaction does not depend on the con-
text, i.e., if two option-context pairs involving the same option but
possibly distinct contexts either both have the property (belong to [p])
or both do not have the property. Examples are the property that the
option does not involve lying or that it saves a life.

• a (pure) context property if its satisfaction does not depend on the
option, i.e., if two option-context pairs involving the same context but
possibly distinct options either both have the property (belong to [p])
or both do not have it. Examples are the property that only one option
is feasible, or that there is a feasible option which saves a life, or that
the choice happens in a traditional Indian environment.

• a relational property if its satisfaction depends on both the option and
the context, i.e., if the property is neither an option property nor a
context property. An example is the property that the option is the

8We build feasibility of the option into the notion of an option-context pair, as a slight
departure from Dietrich and List (2017).
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only currently feasible one saving a life. Whether this property holds
indeed depends both on the option (does the option save a life?) and
the context (does the context offer other feasible options that save a
life?).

There is an abundance of properties one might imagine. For each set of
option-context pairs one might imagine a property whose extension is that
set. Most of these properties are artificial and cannot plausibly play a moral
role. We thus fix a set P of properties deemed to be permissible candidates
for playing a moral role (and specified extensionally or intensionally). Let

• P(x,K) be the set of all properties in P satisfied by the option-context
pair (x,K),

• P(x) be the set of all option properties in P satisfied by the option x
(independently of the context),

• P(K) be the set of all context properties in P satisfied by the context
K (independently of the option).

A reasons structure is defined to be a pair R = (N,≥) of two objects:

• a function N , the normative relevance function, which for any context
K ∈ K specifies a set N(K) ⊆ P of properties, the normatively rel-
evant properties in context K. We place a single requirement on this
function. Informally, changes in what is normatively relevant must
stem from changes in context properties (i.e., should not be ‘arbi-
trary’). Formally, whenever two contexts K,K ′ ∈ K have identical
context properties they induce identical normatively relevant proper-
ties: P(K) = P(K ′)⇒ N(K) = N(K ′).

• a binary relation ≥ on the set of property combinations (subsets of P),
the weighing relation. We interpret S ≥ T to mean that the property
combination S weighs normatively at least as much as (‘outweighs ’)
the property combination T .

Given such a reasons structure, each feasible option x in a context K has a
moral description, defined as the set N(x,K) of all properties which pertain
to x in context K and are normatively relevant in context K. So N(x,K) =
P(x,K) ∩N(K).
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Several moral theories are representable by reasons structures (see Di-
etrich and List 2017). Consider for instance classical utilitarianism. Here
the set N(K) contains all happiness properties, i.e., all properties of type
“the option generates total happiness h”, denoted ph, where h ranges over a
fixed set of possible happiness levels (a fixed subset of R, e.g., [0,∞)). Each
option x generates some happiness level hx, so that its moral description in
any context K is N(x,K) = {phx}. Further, the utilitarian weighing relation
satisfies ph ≥ ph′ if and only if h ≥ h′ (for any two happiness levels h and
h′).

This utilitarian reasons structure (N,≥) is special in three ways: (i) only
option properties are ever relevant, i.e., belong to N(K) for some context K;
(ii) there are never any changes in what is relevant, i.e., N(K) is the same for
all contexts K; (iii) any option is morally described by a single property, i.e.,
N(x,K) is singleton for all option-context pairs (x,K). We refer to these
three conditions as consequentialism, universalism, and monism, respectively.
In general, a reasons structure (N,≥) is:

• consequentialist or context-unrelated if all N(K) (K ∈ K) contain only
option properties, and non-consequentialist or context-related other-
wise;

• universalist or context-invariant if all N(K) (K ∈ K) are the same,
and relativist or context-variant otherwise;

• monistic if N(x,K) contains a single property for all option-context
pairs (x,K), and pluralistic otherwise.

These conditions can be combined at will; an example is consequentialism
together with relativism and pluralism. Most if not all 23 = 8 combinations
are prima facie plausible and have their counterparts in moral philosophy.
We again refer to Dietrich and List (2017) for details.

Just as a ranking of options, so a reasons structure R = (N,≥) implies
a particular rightness function R, of which we say that it explains R or is
a (reason-based) explanation of R. This rightness function specifies for any
context K ∈ K that a feasible option is right just in case its normatively
relevant properties outweigh those of each feasible option:

R(K) = {x ∈ [K] : N(x,K) ≥ N(y,K) for all y ∈ [K]}.

The same rightness function R can have different reason-based explanations –
or no reason-based explanation, although this case does normally not occur
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if R is plausible and P includes all important properties. The main rea-
son why reason-based explanations usually exist is that they can explicitly
accommodate non-consequentialist and relativist theories, unlike ranking-
based explanations. The question of when exactly reason-based explanations
exist has here again a clear-cut answer in the form of necessary and suffi-
cient conditions on the rightness function (Dietrich and List 2017). Reason-
based explanations ‘explain’ rightness in a richer and more proper sense than
ranking-based explanations, by giving a substantive account of justification
of choice. In a sense, a reasons structure captures a moral theory, while a
ranking of options captures not much more than a theory’s deontic content.

3 A choice-theoretic language of deontic logic

The propositional language to be defined enriches the standard deontic lan-
guage in three ways. First, we use two distinct types of atomic sentences:
choice sentences interpreted as saying that a certain option is chosen, and
basic descriptive sentences which could be interpreted as describing proper-
ties of the choice and/or the context. Second, we add the agential modality
of what is possible or necessary through the agent’s choice, in addition to
the deontic modality of what is permissible or obligatory. So we can express
that the agent can help his noneneighbour, and that he is morally obliged to
do so. The choice sentences as well as the agential modality make our lan-
guage ‘choice-theoretic’, as they correspond to two choice-theoretic concepts,
options and feasibility. Third, we add a strict conditional, to express that
a conclusion holds in all worlds in which a premises hold. Having a strict
conditional as well as both modalities in the language gives us key resources
for capturing moral discourse. This can be illustrated with the notorious
principle ‘ought implies can’. This principle can be expressed by a schema
of sentences of the form ‘if it is obligatory that φ, then it is possible that φ’
(where φ is any sentence). Such a sentence contains the deontic modality of
obligation, the agential modality of possibility, and the strict conditional. Us-
ing instead a material conditional would have been inadequate, since ‘ought
implies can’ is meant to express a law-like principle rather than a contingent
fact about the actual world.9

Formally, let X and P be two (disjoint) sets of atomic sentences, called

9Many other moral laws, such as ‘If someone helps you, you ought to thank him’, would
be inexpressible if we only had the material conditional at our disposal.

10



choice sentences and basic descriptive sentences. Note that we use the same
symbols as earlier for the set of options and the set of properties. This is
explained by the following notational convention.

Convention: Choice sentences and options are denoted by the same sym-
bols, i.e., each x in X stands either for the sentence that a certain option
is chosen, or for the option itself. Later when introducing reason-based se-
mantics we will also convene that each p in P can stand not only for a basic
descriptive sentence, but also for a corresponding property.

Our language, denoted L, contains all sentences constructible from the
atomic sentences in X and P using the operators of negation ¬, conjunction
∧, obligation O, agential necessity �, and strict conditional⇒. Formally, L is
the (smallest) set which contains all sentences in X or P and is closed under
construction, i.e., whenever L contains φ and ψ, then L contains ¬φ (not φ),
(φ ∧ ψ) (φ and ψ), Oφ (it is obligatory that φ, in short obligatorily φ), �φ
(it is agentially necessary that φ, in short unpreventably φ), and (φ ⇒ ψ)
(if φ then ψ). So L contains sentences such as x (e.g., ‘you kill Mr X’), p
(e.g., ‘Mr X threatens your family’s life’), q (e.g., ‘there is an escape route’),
(p ∧ ¬q) ⇒ ¬O¬x (e.g., ‘whenever Mr X threatens your family’s life and
there is no escape route, then you are not obliged not to kill Mr X’), and so
on.

Other truthfunctional operators such as disjunction ∨, material implica-
tion → and material bi-implication ↔ are definable in the usual way from
¬ and ∧: (φ ∨ ψ) stands for ¬(¬φ ∧ ¬ψ), (φ → ψ) stands for ¬(φ ∧ ¬ψ),
and so on. Moreover, we introduce the duals of the modal operators O and
�, namely permission P and agential possibility �. Formally, Pφ stands
for ¬O¬φ and reads it is permissible that φ, in short permissibly φ; and �φ
stands for ¬�¬φ and reads it is agentially possible that φ, in short feasibly
φ.

We finally define the universal modality, given by an operator � of con-
ceptual or logical necessity, and its dual possibility operator J. Formally, �φ
stands for τ ⇒ φ where τ is a truth-functional tautology (e.g., (φ∨¬φ)) and
reads it is conceptually necessary that φ, in short always φ; and J φ stands
for ¬�¬φ and reads it is conceptually possible that φ, in short sometimes φ
We could equivalently have taken conceptual necessity � as a primitive oper-
ator of the language and defined the strict conditional φ⇒ ψ as �(φ→ ψ).
The universal modality and the strict conditional are interdefinable.
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4 Four semantics for the language

We now define four possible-worlds semantics for our language. They will
construct their worlds from options and contexts, and base their deontic
modality on either a rightness function, or a ranking of options, or a reasons
structure, or the more standard semantic tool of an accessibility relation
between worlds. These semantics are choice-theoretic in two senses, namely
firstly through their notion of worlds as option-context pairs, and secondly
(except for the fourth-mentioned semantics) through their deontic modality.

We first introduce what is common between the four semantics (Section
4.1), and then define the four semantics (Section 4.2). Logical relations
between the semantics are addressed later in Section 5.

4.1 Commonalities between the four semantics

Worlds as option-context pairs: For each of our four semantics – the
behavioural, ranking-based, reason-based, and basic semantics – an interpre-
tation is a triple (W, v, ∗) in which W is a set of worlds, v is a truth function
on P , and ∗ is some further object, which is a rightness function or ranking
or reasons structure or accessibility relation, depending on the type of se-
mantics. The worlds in W will not be primitive objects, but option-context
pairs. To construct a set of worlds W , one first chooses a set K of contexts,
where by Section 2 a context is an object K which determines a choice menu
[K] ⊆ X. The set of contexts then gives rise to a set of option-context pairs
(worlds) given by W = {(x,K) : K ∈ K, x ∈ [K]}.

Figure 1: A set of worlds W with 3 contexts, 3 options, and 6 worlds
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Figure 1 gives an example with 3 contexts, 6 worlds, and three options
x, y, z in X. The simplest way to construct a W is to fix a set K of choice
menus K ⊆ X, thereby identifying contexts with choice menus, so that W =
{(x,K) : x ∈ K ∈ K}. If we for instance put K = {{x, y}, {x, y, z}}, we ob-
tain 5 worlds: W = {(x, {x, y}), (y, {x, y}), (x, {x, y, z}), (y, {x, y, z}), (z, {x, y, z})}.
Another way to construct W is to define contexts as pairs K = (Y, λ) of a
choice menu Y = [K] taken from a certain set Y of possible choice menus
and an environmental parameter λ taken from a certain set Γ of possible en-
vironmental parameters. Here the set of worlds becomes W = {(x, (Y, λ)) :
x ∈ Y ∈ Y , λ ∈ Γ}.

Convention: Whenever we invoke a set of worlds W , its underlying set of
contexts will be denoted K. For any world w in our sense (an option-context
pair) we denote its option by xw and its context by Kw; so w = (xw, Kw).

Agential possibility: Our notion of worlds as option-context pairs induces
a notion of agential possibility. Note that, intuitively, a world is agentially
possible at the actual world if the agent could bring it about at the actual
world. Now the agent can control the chosen option, but not the context: he
chooses the option, not the context. So, given a set of worlds W , we define
a world w′ ∈ W to be (agentially) possible at a world w ∈ W if the context
is the same: Kw′ = Kw. If w′ is possible at w, then the choice made at w′ is
automatically feasible at w: xw′ ∈ [Kw].

Interdefinability of W and K: Although one naturally thinks of the set
of worlds W as constructed from the set of contexts K, the two sets are
in fact interdefinable. To see why, let us start not from a set of contexts
K, but from any set W , now defined as any set consisting of certain pairs
(x,K) of an option x in X and some (so far arbitrary) object K. We can
then retrieve the implicit set of contexts as being K = {K : (x,K) ∈ W
for some x ∈ X}, where the choice menu offered by a context K ∈ K is
[K] = {x ∈ X : (x,K) ∈ W}. The interdefinability of W and K implies
that we could define interpretations either as triples (W, v, ∗) or as triples
(K, v, ∗). We choose the former, to maximize familiarity to readers used to
possible-worlds semantics.
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4.2 The four semantics defined

Interpretations. We define a basic, behavioural, ranking-based, or reason-
based interpretation of the language L as, respectively, a triple (W, v, ρ),
(W, v,R), (W, v,�), or (W, v,R), in which

• W is the set {(x,K) : K ∈ K, x ∈ [K[} of all option-context pairs
(worlds) given by some set of contexts K,

• v is a function from W × P to {T, F}, the truth function, mapping
any pair (w, p) of a world and a basic descriptive sentence to the truth
value vw(p) of p at the world w,

and, respectively,

• ρ is a binary ‘accessibility ’ relation on W (wρw′ means that world w′

is permissible at world w), where ρ respects agential possibility in that
each world accesses only worlds which are agentially possible, i.e., have
same context,

• R is a rightness function on K (R(K) contains the right options in
context K),

• � is a binary ‘ranking ’ relation on X (x � y means that x is at least
as good as y).

• R is a reasons structure relative to the set of options, the set of contexts
K, and the set P re-interpreted as containing properties.

Re-interpreting sentences in P as properties of option-context pairs is very
natural, since option-context pairs are simply worlds, and to a sentence cor-
responds the property of being true at a world. Formally:

Convention (for reason-based semantics): Given a set of words W and a
truth function v, we identify each basic descriptive sentence p in P with
the equally-labelled property that it is true, satisfied by those option-context
pairs (worlds) w = (x,K) ∈ W for which vw(p) = T .

Truth at a world of an interpretation. Let M be an interpretation of
any of the four kinds, i.e., a basic one (W, v, ρ) or behavioural one (W, v,R)
or ranking-based one (W, v,�) or reason-based one (W, v,R). Truth of an
arbitrary sentence φ in L at a world w ofM is denotedM, w � φ and defined
via the following recursive instructions:
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• M, w � x (where x ∈ X) if and only if x is chosen at w, i.e., x = xw ,

• M, w � p (where p ∈ P) if and only if vw(p) = T ,

• M, w � ¬φ if and only if M, w 6� φ, i.e., not M, w � φ,

• M, w � (φ ∧ ψ) if and only if M, w � φ and M, w � ψ,

• M, w � �φ if and only if φ holds in all agentially possible worlds, i.e.,
M, w′ � φ for all world w′ ∈ W sharing the context with w,

• M, w � (φ ⇒ ψ) if and only if ψ holds in all worlds where φ holds,
i.e., for all worlds w′ in W , whenever M, w′ � φ then M, w′ � ψ
(equivalently, M, w′ � (φ→ ψ)),

• M, w � Oφ if and only if, respectively,

– φ holds in all accessible worlds, i.e., M, w′ � φ for all worlds
w′ ∈ W such that wρw′,

– φ holds in all agentially possible world in which the chosen option
is in R(K), i.e., M, w′ � φ for all worlds w′ ∈ W with the same
context K as in w and with some option in R(K),

– φ holds in all agentially possible world in which the chosen option
ranks top, i.e., M, w′ � φ for all worlds w′ ∈ W with the same
context K as in w and with an option x such that x � y for each
y in [K],

– φ holds in all agentially possible worlds whose normatively relevant
properties rank top, i.e.,M, w′ � φ for all worlds w′ ∈ W with the
same context K as in w and with an option x satisfying N(x,K) ≥
N(y,K) for all y ∈ [K] (i.e., satisfying N(w′) ≥ N(w′′) for all
worlds w′′ ∈ W with context K).

The first two instructions settle the truth values of atomic sentences of the
two types. The other instructions give the truth conditions of each operator
in the language. The truth condition for the deontic operator O marks the
(only) difference between the four semantics; it is based on ρ, R, �, or R.
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5 How are the four semantics related?

How do the four semantics compare to one another in terms of strength? For
instance, does basic semantics validate more or fewer sentences and entail-
ments than behavioural semantics? We first clarify the hierarchy of logical
strength between the four semantics (Section 5.1), then characterize the pre-
cise “logical gap” between weaker and stronger of the four semantics (Section
5.2), and finally consider some refinements of our four semantics obtained by
placing requirements on interpretations such as transitivity of the ranking or
consequentialism of the reasons structures (Section 5.3).

5.1 The hierarchy of logical strength

As it turns out, behavioural interpretations are equivalent to particular basic
interpretations, and ranking- and reason-based interpretations are equivalent
to particular behavioural interpretations. Remarks 1-3 state this formally.
We call one interpretationM (of any of our four types) equivalent to another
one M′ (of the same or another of our types) if M and M′ have the same
set of worlds W and make the same sentences true at each world in W ; in
particular they make the same atomic sentences in P true at each world, so
have the same truth function v on P .

Remark 1. Every behavioural interpretation (W, v,R) is equivalent to a basic
one (W, v, ρ), by taking wρw′ to mean that w′ has the same context K as w
and some option from R(K).

Remark 2. Every ranking-based interpretation (W, v,�) is equivalent to a
behavioural one (W, v,R), obtained by letting R be the rightness function
implied (explained) by �.

Remark 3. Every reason-based interpretation (W, v,R) is equivalent to a
behavioural one (W, v,R), obtained by letting R be the rightness function
implied (explained) by R.

Remarks 1-3 imply the hierarchy shown in Figure 2: basic semantics (de-
noted BASIC) is strengthened by behavioural semantics (denoted BEHA),
which is in turn strengthened by ranking-based semantics (denoted RANK)
and reason-based semantics (denoted REAS). As usual, one semantics is
‘stronger’ than or ‘strengthens’ another if it yields at least the same logical
entailments among sentences, hence has at least the same logically valid sen-
tences. To put this formally, note first that any (possible-worlds) semantics
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Figure 2: Relationship between the four semantics (arrows point from a
stronger to a weaker semantics)

for L defines a class S of admissible interpretations for L (for instance the
class of behavioural interpretations in case of BEHA). It further defines
an entailment relation �, where a set of sentences Φ ⊆ L entails φ ∈ L –
written Φ � φ – if truth of all sentences in Φ at a world of an interpretation
in S implies truth of φ at this world of the interpretation. A sentence φ
entailed by the empty set is logically valid ; we then write � φ rather than
∅ � φ. One semantics with entailment relation � strengthens another with
entailment relation �′ if, for all Φ ⊆ L and φ ∈ L, Φ �′ φ implies Φ � φ
(hence in particular� φ implies �′ φ). Two semantics are equivalent if they
yield the same entailment relation (hence the same logical truths).

5.2 The gap from one semantics to another

But how does BEHA strengthen BASIC? And how do RANK and REAS
strengthen BEHA? Theorems 4-6 will answer these questions by charac-
terizing the logical gap between BEHA and BASIC, between RANK and
BEHA, and between REAS and BEHA. In each theorem, the logical gap
in question will be characterized both semantically and syntactically. For
instance the gap between BEHA and BASIC will be characterized

• semantically by specifying a condition on the accessibility relation of a
basic interpretation under which the interpretation becomes equivalent
to a behavioural interpretation,

• syntactically by specifying a schema of sentences which are logically
true under BEHA but not under BASIC.

These results can guide the search for adequate semantics for deontic logic,
because the question of whether to strengthen BASIC to BEHA, and fur-
ther to RANK or rather to REAS, becomes the question of whether to en-
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dorse the additional semantic or syntactic features coming with that strength-
ening.

We begin with the gap between BASIC and BEHA. Semantically, this
gap is closed by the following condition on a basic interpretation (W, v, ρ) or
more precisely on its accessibility relation ρ:

Ai (act-independence): If two worlds w and w′ share the same context K,
then they access the same worlds, i.e., for all worlds w̄ ∈ W , wρw̄ ⇔
wρw̄.

Informally, the agent’s action (which constitutes the only different between w
and w′) does not affect what is permissible. In short, we are not the authors
(by our actions) of what is right or wrong. This is very plausible. Note that
the interpretation defined in Remark 1 indeed satisfies Ai. The following
schema of sentences (axioms) reflects the same idea:

Ax1 : Oφ⇒ �Oφ, for φ ∈ L.

Informally, the sentence Oφ⇒ �Oφ means that whenever something (φ) is
obligatory, then it is obligatory independently of the action, i.e., the obliga-
tion is agentially necessary.

The first theorem states that the condition Ai or the schema Ax1 define
precisely the gap from BASIC to BEHA, in the sense that adding Ai or
Ax1 makes BASIC equivalent to BEHA.

Convention: For any semantics SEM (e.g., BASIC),

• if the class of interpretations is restricted by imposing a condition or list
of conditions Con on interpretations (e.g., condition Ai), the resulting
stronger semantics is denoted SEM + Con (e.g., BASIC + Ai),

• if the class of interpretations is restricted by imposing validity at all
worlds of a schema of sentences or list of schemas Ax (e.g., schema
Ax1), the resulting stronger semantics is denoted SEM + Ax (e.g.,
BASIC + Ax1).

Theorem 4. BEHA is equivalent to BASIC +Ai, and to BASIC +Ax1.

It seems highly plausible to impose Ai or Ax1. So, someone who endorses
BASIC has reason to even endorse BEHA.
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Next, what is the gap from BEHA to RANK? Given a rightness function
R, we say that option x sometimes beats option y if x is right in at least one
context where y is feasible, i.e., there is at least one context K in K such
that x ∈ R(K) and y ∈ [K]. The concept that an option ‘sometimes beats’
another corresponds precisely to the classic concept of revealed preference in
choice theory. Choice theorists say that an option is revealed-preferred to
another if sometimes the first option is chosen while the second is feasible.
The following condition on a behavioural interpretation (W, v,R), or more
precisely on its rightness function R, is then the analogue of a classic choice-
theoretic condition due to Richter (1971):

Rev (Richter’s revelation coherence): If an option x is feasible in a context
K and each option feasible in K is sometimes beaten by x, then x is a
right in the context, i.e., x ∈ R(K).

For any sentences φ and ψ, let SB(φ, ψ) denote the sentenceJ (Pφ ∧ �ψ)
expressing that φ sometimes beats ψ, or more precisely that sometimes φ is
permissible while ψ is feasible. The following schema of sentences corresponds
to condition Rev. It assumes finite X (so that the conjunction indexed by
X is well-defined):

Ax2 : (�x ∧ [∧y∈X(�y → SB(x, y))])⇒ Px, for x ∈ X.

Theorem 5. RANK is equivalent to BEHA+Rev, and (if X is finite) to
BEHA+ Ax2.

Finally, what is the gap between BEHA and REAS? Consider the fol-
lowing two conditions on a behavioural interpretation (W, v,R), or more
precisely on its rightness function R. They are obviously satisfied if R is
generated by a reasons structure.10 The first condition says that in any con-
text K the rightness of options depends only on the properties in P of these
options:

Re1 : For all contexts K and feasible options x, y ∈ [K], if P(x,K) =
P(y,K) then x ∈ R(K)⇔ y ∈ R(K).

The second condition is an analogue of Rev, except that options in X are
replaced by sets of properties in P . We first adapt our terminology to such

10In fact, they are necessary and sufficient for R to be reason-based representable (see
Dietrich and List 2016).
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sets. A set S ⊆ P is feasible in context K if S = P(x,K) for some feasible
option x ∈ [K], and right in context K if S = P(x,K) for some right option
x ∈ R(K). A set S ⊆ P sometimes beats S ′ ⊆ P if in some context S is
right while S ′ is feasible. This is the condition:

Re2 : If a set S ⊆ P is feasible in a context K and each set S ′ ⊆ P feasible
in K is sometimes beaten by S, then S is right in K.

To state syntactic counterparts of Re1 and Re2, we write P̂ for the set
of sentences expressing complete states with respect to P , i.e., sentences
expressing which sentences in P hold (those in a particular set S ⊆ P) and
which do not (those in the complement P\S). Formally,

P̂ = {(∧p∈Sp) ∧ (∧p∈P\S¬p) : S ⊆ P}.

Note that P̂ (and hence, the schemas Ax3 and Ax4 below) are only defined
if P is finite, so that the conjunctions indexed by S and by P\S are well-
defined. Consider the following schema of sentences:

Ax3 : (Pp ∧ �(p ∧ x))⇒ Px, for x ∈ X and p ∈ P̂ .

Informally, (Pp ∧ �(p ∧ x)) ⇒ Px expresses that whenever p is permissible
and can hold together with action x, then that action is permissible. The
rationale is that whether an action is permissible is fully determined by the
truth values of the sentences in P ; so whenever an action x is possible together
with a permissible combination in P̂ , then x is itself permissible. As shown
in the appendix, Ax3 is the exact syntactic counterpart of condition Re1.
Finally, the following schema is the counterpart of condition Re2. just as the
schema Ax2 is the counterpart of condition Rev:

Ax4 : (�p ∧ [∧q∈P̂(�q → SB(p, q))])⇒ Pp, for p ∈ P̂ .

Theorem 6. REAS is equivalent to BEHA+Re1, Re2, and (if P is finite)
to BEHA+ Ax3, Ax4.

5.3 Refining the semantics by adding conditions on in-
terpretations

Each of our semantics can be strengthened by restricting its set of admissi-
ble interpretations. We have already considered some strengthenings: that
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of BASIC to BASIC + Ai, and those of BEHA to BEHA + Rev and
BEHA + Re2, Re3. There the purpose was to reduce one semantics to
another (see Theorems 4-6). Setting that purpose aside, we now mention
further strengthenings of interest, i.e., other conditions one might impose on
interpretations.

Basic semantics might be strengthened by imposing the following classic
condition on the accessibility relation ρ of a basic interpretations (W, v, ρ):

Dilfree (dilemma-freeness): at each world w there is a permissible world,
i.e., a world w′ such that wρw′.

Behavioural semantics might once again be strengthened by imposing dilemma-
freeness, this time expressed as a condition on the rightness function R of a
behavioural interpretation (W, v,R) (we use the same label ‘Dilfree’):

Dilfree (dilemma-freeness): In each context K, at least one feasible option
is permissible, i.e., [K] 6= ∅.

Ranking-based semantics might be strengthened by imposing one or more of
the following conditions on the ranking ≥ of a ranking-based interpretation
(W, v,≥). The first condition is again dilemma-freeness, now in a ranking-
based rendition (yet denoted by the same symbol Dilfree):

Dilfree (dilemma-freeness): In each context K, there is a top-ranking fea-
sible option, i.e., an x ∈ [K] such that x � y for all y ∈ [K].

Com (commensurability) � is complete, i.e., for all x, y ∈ X, x � y or y � x.

Tran (transitivity or teleology): � is transitive, i.e., for all x, y, z ∈ X, if
x � y and y � z, then x � z.11

Reason-based semantics might be strengthened in several interesting ways,
by imposing one or more of the following conditions on the reasons structure
R = (N,≥) of a reason-based interpretation (W, v,R). While the first three
conditions are reason-based analogues of the above conditions on behavioural
interpretations (and shall be denoted by the same symbols), the last three
conditions are very different and illustrate the richness of reason-based se-
mantics:

11The interpretation of transitivity as teleology follows Broome (2004) and Dietrich and
List (2017). One might also require reflexivity as part of teleology.
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Dilfree (dilemma-freeness): In each context K, there is a top-ranking fea-
sible option, i.e., an x ∈ [K] such that N(x,K) ≥ N(y,K) for all
y ∈ [K].

Com (commensurability): ≥ is complete, i.e., for all property sets S, S ′ ⊆ P ,
S ≥ S ′ or S ′ ≥ S.12

Tran (transitivity or teleology): ≥ is transitive, i.e., for all property sets
S, S ′, S ′′ ⊆ P , if S ≥ S ′ and S ′ ≥ S ′′, then S ≥ S ′′.13

Cons (consequentialism): Only context-unrelated properties are ever nor-
matively relevant, i.e., for all contexts K all normatively relevant prop-
erties in N(K) are context-unrelated.

Univ (universalism): There are no changes in normatively relevant proper-
ties, i.e., the set of normatively relevant properties N(K) is the same
for all contexts K ∈ K.

Univ∗ (full-relevance universalism): Always all properties are relevant, i.e.,
N(K) = P for all contexts K. (This implies Univ.)

Cons∗ (full-relevance consequentialism): Always all option properties (and
no other properties) are relevant, i.e., N(K) consists of all option prop-
erties for all contexts K. (This implies Cons and Univ.)

Moni (monism): Each option x in any context K has a single normatively
relevant property, i.e., N(x,K) is singleton.

Figure 3 refines Figure 2 by adding to it some of our refined reason-based
semantics. We conjecture (but have yet to verify) that the graph in 3 stays
correct if we we do one or both of the following modifications:

• replacing each semantics by its dilemma-free version, by always impos-
ing Dilfree everywhere,

12One might require completeness of ≥ only among those pairs of property sets S and
S′ for which comparisons matter, in the sense that there is a context in which S and S′ are
the sets of normatively relevant properties of some feasible options x and x′, respectively.

13One might require transitivity only where comparisons matter, i.e., one might quantify
only over those triples of property sets S, S′ and S′′ such that in at least one context S,
S′ and S′′ are instantiated as the sets of normatively relevant properties of some feasible
options x, x′ and x′′, respectively.
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Figure 3: Relationship between some refined semantics (arrows point from a
stronger to a weaker semantics, bidirectional arrows indicate equivalence)

• replacing each semantics except BASIC by its commensurable and/or
transitive version, by imposing Com and/or Tran everywhere.

In Figure 3, why is REAS equivalent to REAS+Univ and REAS+Univ∗,
rather than strictly weaker? Why is REAS + Cons + Univ equivalent to
REAS+Cons∗, rather than strictly weaker? And why does REAS+Cons+
Univ strengthen RANK? The answers are given by the next three remarks,
respectively.

Definition 7. One reasons structure (or ranking ofX) is deontically equiv-
alent to another one if both imply the same rightness function.

Remark 8. Every interpretation of REAS is equivalent to one of REAS +
Univ, and even to one of REAS + Univ∗. This is because each reasons
structure R = (N,≥) is deontically equivalent to one that is universalist and
if wished even full-relevance universalist (see Dietrich and List 2016, 2017).

Remark 9. Every interpretation of REAS + Cons + Univ is equivalent to
one of REAS+Cons∗. This is because each consequentialist and universalist
reasons structure R = (N,≥) is deontically equivalent to a reasons structure
that is full-relevance consequentialist.14

14This new reasons structure (N ′,≥′) is defined as follows. By universalism we can
identify N and N ′ with fixed sets of properties. Let N ′ be the set of all option properties
(so we add to N all missing option properties), and let S ≥′ T mean that S ∩N ≥ T ∩N
(so ≥′ pays no attention to the added properties).
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Remark 10. Every interpretation of REAS + Cons + Univ is equivalent to
one of RANK. This is because each consequentialist and universalist reasons
structure R = (N,≥) is deontically equivalent to some ranking � of X.15

Remark 8 has an important implication: when working with REAS –
e.g., when checking validity of entailments, or consistency of sets of sen-
tences – we can restrict attention to reason-based interpretations (W, v,R)
which are full-relevance universalist. This simplifies the exercise significantly,
since the reasons structure R = (N,≥) is then given by just one parameter,
the weighing relation ≥, while N is fixed and trivial. Under full-relevance
universalism, we can abbreviate the reasons structure by ≥ and the inter-
pretation by (W, v,≥). Such a special reason-based interpretation (W, v,≥)
is an object as simple as a ranking-based interpretation (W, v,�); the sole
difference is that ≥ ranks property sets while � ranks options.

We have just explained how to simplify the semantics REAS: by its
equivalence to REAS + Univ∗, we may restrict attention to full-relevance
universalist interpretations, in which N drops out as a parameter and the
reasons structure reduces to a relation ≥ over property sets. An analogous
simplification move works for REAS + Cons + Univ: by its equivalence to
REAS + Cons∗, we may restrict attention to full-relevance consequentialist
interpretations, in which again N drops out as a parameter. But this time
the underlying assumption is that all and only option properties matter, so
that the reasons structure boils down to a relation ≥ over option property
sets.

A similar simplification move fails to exist for many other variants of
reason-based semantics. For instance, in REAS +Cons and REAS +Moni
we cannot restrict attention to a fixed and constant normative relevance func-
tion N . That is, the possibility of relativism here genuinely adds something
to the semantics in question, by weakening it.

The deontic equivalence of every moral theory (reasons structure) to a
universalist one by no means implies that all moral theories are ‘essentially
universalist’. Relativism is not made redundant as a potential meta-ethical
position. The universalist counterpart of a relativistic theory (reasons struc-
ture) constitutes a genuinely different moral theory, although it happens to
deliver the same deontic verdicts. It offers an entirely different (and possibly

15This ranking is defined as follows: for all x, y ∈ X, x � y ⇔ N(x,K) ≥ N(y,K),
where the choice of context K is arbitrary since N(x,K) and N(y,K) do not depend on
K by consequentialism and universalism.
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artificial and unconvincing) account of justification, reasons, or right-making
features. Correctly interpreted, Remark 8 – far from making relativism irrele-
vant – highlights an underdetermination problem: the underdetermination of
moral theory by deontic content, which has already been stressed by different
authors (e.g., Broome 2004, Parfit 2011, Dietrich and List 2017).

6 Appendix: proofs

6.1 Proof of Theorem 4

Lemma 11. Any behavioural interpretation is equivalent to a basic interpre-
tation satisfying Ai, and vice versa.

Lemma 12. A basic interpretation satisfying Ai validates Ax1 at each world,
and a basic interpretation validating Ax1 at each world is equivalent to a basic
interpretation satisfying Ai.

Proof of Lemma 11. First, any behavioural interpretation (W, v,R) is
equivalent to the basic interpretation (W, v, ρ) in which wρw′ if and only if
Kw = Kw′ and xw′ ∈ R(Kw) (= R(Kw′)). Note that ρ satisfies Ai. Con-
versely, if a basic interpretation (W, v, ρ) satisfies (Ai), then we can define
a rightness function by assigning to each context K the set R(K) = {xw′ :
w′ ∈ ρ(w)}, where w is some (hence by Ai any) world with context K. This
guarantees that R(K) ⊆ [K], so that R is a well-defined rightness function.
One easily checks equivalence of the behavioural interpretation (W, v,R) to
(W, v, ρ). �

The proof of Lemma 12 draws on a simple lemma:

Lemma 13. For each sentence ψ, �BASIC �ψ → ψ . For each sentence φ it
follows (via ψ = Oφ) that�BASIC+Ax1 �Oφ↔ Oφ.

Proof. Left to the reader.

Proof of Lemma 12. First, consider a basic interpretation M = (W, v, ρ)
satisfying Ai, and a sentence φ ∈ L. To show that Oφ⇒ �Oφ holds at each
world, we consider a w ∈ W such that M, w � Oφ and have to show that
M, w � �Oφ, i.e., that M, w′ � Oφ for all worlds w′ with same context as
w. Let w′ be such a world. So ρ(w) = ρ(w′) by Ai. Hence, as M, w � Oφ,
we have M, w′ � Oφ.
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Conversely, now consider a basic interpretationM = (W, v, ρ) validating
Ax1 at each world. For each context K ∈ K fix an option xK ∈ [K] (strictly
speaking, the existence of such an assignment K 7→ xK assumes the axiom
of choice). Define a new basic interpretation M′ = (W, v, ρ′) with same W
and v as follows: for each world w = (x,K) let ρ′(x,K) = ρ(xK , K). By
construction, M′ satisfies Ai. We now show that M is equivalent to M′.
Concretely, we have to show the following for each φ ∈ L:

M, w � φ⇔M′, w � φ for all worlds w ∈ W. (1)

We prove (1) by induction on φ. First, if φ is atomic, i.e., in P or X, then
(1) holds because M and M′ share the truth function v on W × P . Now
assume (1) holds for φ and ψ. Then:

• (1) holds for ¬φ since for all worlds w we haveM, w 6� φ⇔M′, w 6� φ,
whence M, w � ¬φ⇔M′, w � ¬φ.

• (1) holds for φ∧ψ since at all worlds w we haveM, w � φ, ψ ⇔M′, w �
φ, ψ, so that M, w � φ ∧ ψ ⇔M′, w � φ ∧ ψ.

• Next consider �φ, and any world w. By assumption M, w̄ � φ ⇔
M′, w̄ � φ for all worlds w̄. So [M, w̄ � φ for all w̄ with Kw̄ = Kw]⇔
[M′, w̄ � φ for all w̄ with Kw̄ = Kw], i.e., M, w � �φ⇔M′, w � �φ.

• Now consider φ ⇒ ψ and a world w. Since, for all worlds w̄, M, w̄ �
φ ⇔ M′, w̄ � φ and M, w̄ � ψ ⇔ M′, w̄ � ψ, we have that [for all
worlds w̄ if M, w̄ � φ then M, w̄ � ψ]⇔[for all worlds w̄ if M′, w̄ � φ
then M′, w̄ � ψ]. In other words, M, w � φ⇒ ψ ⇔M′, w � φ⇒ ψ.

• Finally, and less trivially, consider Oφ and a world w = (x,K). We
must show that M, w � Oφ⇔M′, w � Oφ. Note that

M, w � Oφ ⇔ M, w � �Oφ by Lemma 13
⇔ M, wK � �Oφ as Kw = KwK

(= K)
⇔ M, wK � Oφ by Lemma 13.

So it remains to show that M, wK � Oφ ⇔ M′, w � Oφ, i.e., that
[M, w̄ � φ for all w̄ ∈ ρ(wK)]⇔ [M′, w̄ � φ for all w̄ ∈ ρ′(w)]. The lat-
ter holds because ρ(wK) = ρ′(w) and because by induction hypothesis
M, w̄ � φ⇔M′, w̄ � φ for all worlds w̄.�
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6.2 Proof of Theorem 5

Lemma 14. Any ranking-based interpretation is equivalent to a behavioural
interpretation satisfying Rev, and vice versa.

Lemma 15. If X is finite, a behavioural interpretation satisfies Rev if and
only if it validates Ax2 at each world.

Proof of Lemma 14. Any ranking-based interpretation (W, v,�) is equiv-
alent to the behavioural interpretation (W, v,R) in which R is the rightness
function induced by �. This R satisfies Rev by Richter’s Theorem (in the
generalized version of Dietrich-List 2016, 2017). Conversely, if a behavioural
interpretation (W, v,R) satisfies Rev, then, again by that theorem R is in-
duced by some binary relation � on X, and (W, v,R) is clearly equivalent to
(W, v,�). �

The proof of Lemma 15 begins with a simple observation:

Lemma 16. For all x, y ∈ X and behavioural interpretationsM = (W, v,R),
x sometimes beats y w.r.t. R if and only if SB(x, y) is true at all worlds of
M.

Proof. Consider x, y ∈ X and a behavioural interpretationsM = (W, v,R).
First assume M, w′ � SB(x, y) for all w′ ∈ W . Then for some world
w we have M, w � Px and M, w � �y, or equivalently x ∈ R(Kw) and
y ∈ [Kw]. So x sometimes beats y w.r.t. R. Conversely, assume x some-
times beats y. Then we may pick a context K such that x ∈ R(K) and
y ∈ [K]. SoM, w � Px and M, w � �y for worlds w with context K. So
M, w′ � SB(x, y) for all w′ ∈ W . �

Proof of Lemma 15. Let X be finite, and consider a behavioural inter-
pretation M = (W, v,R).

First assume R satisfies Rev, and consider a choice sentence x ∈ X. To
show that (�x ∧ [∧y∈X(�y → SB(x, y))]) ⇒ Px holds at all worlds of M,
consider a world w = (z,K) such that M, w � �x ∧ [∧y∈X(�y → SB(x, y))],
and let us show that M, w � Px. By assumption, M, w � �x, and M, w �
�y → SB(x, y) for all y ∈ X. So x ∈ [K], and for all y ∈ X, if y ∈ [K], then
M, w � SB(x, y), meaning by Lemma 16 that x sometimes beats y. Since
each y ∈ [K] is sometimes beaten by x, we have x ∈ R(K) by Rev. So,
M, w � Px.
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Conversely, suppose M validates Ax2 at each world. To show Rev, con-
sider a context K ∈ K and a feasible option x ∈ [K] such that each y ∈ [K] is
sometimes beaten by x. We have to show that x ∈ R(K). Pick a world w with
context K. By assumption, M, w � �x (as x ∈ [K]), and, for each y ∈ X,
if M, w � �y (i.e., if y ∈ [K]), then M, w � SB(x, y) (as this means that x
sometimes beats y by Lemma 16). SoM, w � (�x∧ [∧y∈X(�y → SB(x, y))]).
Since M validates Ax2 at w, it follows that M, w � Px. So x ∈ R(K). �

6.3 Proof of Theorem 6

Lemma 17. Any reason-based interpretation is equivalent to a behavioural
interpretation satisfying Re1 and Re2, and vice versa.

Lemma 18. If P is finite, a behavioural interpretation satisfies Re1 if and
only if it validates Ax3 at each world.

Lemma 19. If P is finite, a behavioural interpretation satisfies Re2 if and
only if it validates Ax4 at each world.

Proof of Lemma 17. Each reason-based interpretation (W, v,R) is equiv-
alent to the behavioural interpretation (W, v,R) in which R is the rightness
function induced by R. This R satisfies Re1 and Re2 by Dietrich-List (2016,
2017). Conversely, if a behavioural interpretation (W, v,R) satisfies Re1 and
Re2, then by the same theorem R is induced by some reasons structure R,
and (W, v,R) is obviously equivalent to (W, v,R). �

Notation: If P is finite, then to each set S ⊆ P corresponds a sentence in
P̂ which is defined and denoted as pS = (∧s∈Ss) ∧ (∧s∈P\S¬s); so P̂ = {pS :
S ⊆ P}.

Lemma 20. Let P be finite. For all behavioural interpretations M =
(W, v,R), sets S ⊆ P, and contexts K,

• S is feasible in context K if and only if M, w � �pS for worlds w with
context K,

• S is right in context K (w.r.t. R) if and only ifM, w � PpS for worlds
w with context K.

Proof. Let P , M = (W, v,R), S and K be as specified. First, S is
feasible in K if and only if there is an x ∈ [K] such that S = P(x,K), i.e.,
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such thatM, (x,K) � pS. Equivalently,M, w � �pS for worlds with context
K. Second, S is right in K if and only if there is an x ∈ R(K) such that
S = P(x,K), i.e., such that M, (x,K) � pS. Equivalently, M, w � PpS for
worlds with context K. �

Proof of Lemma 18. Let P be finite, and M = (W, v,R) a behavioural

interpretation.
First assume R satisfies Re1, and S ⊆ P . To show that (PpS ∧ �(pS ∧

x)) ⇒ Px holds at all worlds of M, consider any world w and assume
M, w � PpS ∧ �(pS ∧ x). We show that M, w � Px. Let K be w’s context.
As M, w � PpS, S is right in context K by Lemma 20. So S = P(y,K)
for some right option y ∈ R(K). Meanwhile, as M, w � �(pS ∧ x) there is
a z ∈ [K] such that M, (z,K) � pS ∧ x. It follows that z = x, and so that
M, (x,K) � pS. Hence, P(x,K) = S. Since P(x,K) = P(y,K) and since
y ∈ R(K), we have x ∈ R(K) by Ax3.

Conversely, assumeM validates Ax3 at all worlds. To show Re1, consider
a context K, a feasible option x ∈ [K], and a right option y ∈ R(K) such
that P(x,K) = P(y,K). We must show that x ∈ R(K). Write S for the set
P(x,K) = P(y,K). Let w be any world with context K. As S = P(y,K)
and y ∈ R(K), the set S is right in context K. So (*) M, w � PpS by
Lemma 20. Further, M, (x,K) � pS (as P(x,K) = S) and M, (x,K) � x.
So M, (x,K) � pS ∧ x, and hence (**) M, w � �(pS ∧ x). By (*) and (**)
and the validity of Ax3 at all worlds, we haveM, w � Px. Hence x ∈ R(K).
�

Finally, to prove Lemma 19 we first establish a simple fact (analogous to
Lemma 16):

Lemma 21. Let P be finite. For all S, S ′ ⊆ P and behavioural interpreta-
tionsM = (W, v,R), S sometimes beats S ′ w.r.t. R if and only if SB(pS, pS′)
is true at all worlds of M.

Proof. Let P , S, S ′, andM = (W, v,R) be as specified. Now SB(pS, pS′)
holds at all worlds of M if and only if M, w � PpS and M, w � �pS′ for
some world w. Equivalently (by Lemma 20) S is right and S ′ is permissible
in some context, i.e., S sometimes beats S ′. �

Proof of Lemma 19. Let P be finite, andM = (W, v,R) be a behavioural

interpretation.
Suppose first R satisfies Re2, and S ⊆ P . We must show that (�pS ∧

[∧S′⊆P(�pS′ → SB(pS, pS′))]) ⇒ PpS holds at all worlds of M. Let w =
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(z,K) such that M, w � �pS ∧ [∧S′⊆P(�pS′ → SB(pS, pS′))]. We show that
M, w � PpS. By assumption, M, w � �pS, and, for each S ⊆ P , if M, w �
�pS′ then M, w � SB(pS, pS′). By Lemmas 20 and 21 this means that S
is feasible in context K and, for each S ′ ⊆ P , if S ′ is feasible in K then S
sometimes beats S ′. Hence S is right in K by Re2, so that M, w � PpS by
Lemma 20.

Conversely, suppose M validates Ax4 at each world. To show Re2, as-
sume that S ⊆ P is feasible in a given context K and each S ′ ⊆ P fea-
sible in K is sometimes beaten by S. By Lemmas 20 and 21 this means
that, at worlds w with context K, M, w � �pS and, for all S ⊆ P , if
M, w � �pS′ thenM, w � SB(pS, pS′). So, still at worlds w with context K,
M, w � (�x∧ [∧y∈X(�y → SB(x, y))]). SinceM validates Ax2 at all worlds,
it follows that M, w � Px. So x ∈ R(K) by Lemma 20. �
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