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Abstract

Ever since the Harsanyi-Sen debate, it is controversial whether someone’s welfare
should be measured by her von-Neumann-Morgenstern (VNM) utility, for instance
when analysing welfare intensity, social welfare, interpersonal welfare comparisons,
or welfare inequality. We prove that natural working hypotheses lead to a different
welfare measure. It addresses familiar concerns about VNM utility, by faithfully cap-
turing non-ordinal welfare features such as welfare intensity, despite resting on purely
ordinal evidence such as revealed preferences or self-reported welfare comparisons.
Using this welfare measure instead of VNM utility alters social welfare analysis —
for instance, Harsanyi’s ‘utilitarian theorem’now effectively supports prioritarian-
ism. VNM utility is shown to be a hybrid object, determined by an interplay of
two factors: welfare and attitude to intrinsic risk, i.e., to risk in welfare rather than
outcomes.

Keywords: welfare, utility, social welfare, utilitarianism, Harsanyi-Sen debate

1 Introduction

How should individual welfare be measured? This long-standing question matters
throughout economics and applications. In practice, economists often measure wel-
fare by VNM utility, largely because VNM utility is available based on ordinal evid-
ence such as revealed preferences or self-reported comparisons between risky options.
The notorious objection against this welfare measure is that it fails to adequately
reflect non-ordinal welfare features such as welfare intensity, regardless of how one
normalises VNM utility. Non-ordinal welfare features are however indispensable for
many applications, such as: aggregating individual into social welfare, comparing wel-
fare levels (or differences) across people, measuring inequality in welfare, and making
welfare-based policy recommendations.

1Personal acknowledgements TBA. This work has been presented at SEAT (Paris, July 2023),
Centre d’Economie de la Sorbonne (University Paris 1, November 2023), the Workshop on the
Foundations of Decision Theory (LMU Munich, June 2024) and the Vienna Joint Economics Seminar
(University of Vienna, October 2024).



The controversy over whether VNM utility can measure welfare has culminated
in the Harsanyi-Sen debate in the 1970s (later joined by Weymark 1991) and counts
today among the most persistent points of divergence among welfare economists and
formal ethicists. Critics of VNM utility as a welfare measure have a diffi cult standing
so far, as they have not yet come up with an alternative measure based on ordinal evid-
ence. The lack of ordinal foundations exposes these critics to the ‘non-observability’
objection —at least if one follows the ordinalist tradition that accepts only ordinal
evidence. Ordinalism about evidence is itself controversial, but we will stick to this
common assumption here (cf. Baccelli and Mongin 2016 on ordinalism and utility).

This paper provides a proof of concept for the VNM-sceptic position, by show-
ing that purely ordinal evidence leads to a different welfare measure if one accepts
some plausible working assumptions. This measure will respond to classic objections
against VNM utility as a welfare measure.

We adopt the familiar idea, defended by Bell and Raiffa (1988) and Cibinel (2024),
that someone’s VNM utility function is influenced by two distinct features: her welfare
or ‘intrinsic utility’ from outcomes, and her attitude to risk in welfare or ‘intrinsic
risk’. Unfortunately, one and the same VNM utility function can be given many
different explanations in terms of welfare and intrinsic risk attitude —which seems to
make welfare unobservable. Figure 1 indeed displays four rival explanations of the

Figure 1: Four explanations of the same VNM utility function in terms of welfare and
intrinsic risk attitude

same concave VNM utility function over wealth levels:2

• Case 1: constant marginal welfare & aversion to intrinsic risk. An extra 1$
gives the same extra welfare regardless of initial wealth; so welfare is linear.
Meanwhile a lottery with expected welfare w is worse than a sure outcome with
welfare w; so utility is concave in welfare, hence also concave in wealth, as
welfare is linear. Note that we have invoked the intrinsic rather than standard
risk attitude, by considering expected welfare, not expected wealth.

• Case 2: diminishing marginal welfare & neutrality to intrinsic risk. An extra
$1 gives less extra welfare if initial wealth is higher; so welfare is concave.
Meanwhile a lottery with expected welfare w is as good as a sure welfare of w;

2 In all four plots in Figure 1, the utility and welfare functions are normalised so that they take
value 0 and derivative 1 at a fixed wealth level.
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so utility coincides with welfare, hence is also concave.

• Case 3: slightly diminishing marginal welfare & slight aversion to intrinsic risk.
An extra $1 gives slightly less extra welfare if initial wealth is higher; so welfare
is slightly concave. Meanwhile a lottery with expected welfare w is slightly
worse than a sure welfare of w; so utility is slightly concave in welfare, and thus
concave in wealth.

• Case 4: increasing marginal welfare & strong aversion to intrinsic risk. An
extra $1 gives more extra welfare if initial wealth is higher; so welfare is convex.
Meanwhile a lottery with expected welfare w is much worse than a sure welfare
of w; so utility is so strongly concave in welfare that it is also concave in wealth.

Seemingly, none of the four explanations can be ruled out empirically, which
blocks the access to individual welfare, and thus blocks the possibility to assess social
welfare, measure welfare inequality, or make welfare-based policy recommendations.
It is therefore understandable that welfare economists are naturally drawn towards
VNM utility as a proxy for welfare, at least when observability matters. However,
the more the individuals depart from intrinsic risk neutrality, the less accurate this
welfare proxy becomes for them —ultimately distorting social welfare judgments and
welfare-based policies.

This paper introduces an new approach by which welfare will become observable,
without drawing on non-ordinal evidence. But first, what does the literature say?

Welfare and utility in the literature

Our view that VNM utility has two determinants — welfare (intrinsic utility) and
attitude to risk in welfare (intrinsic risk attitude) —will resonate with many rational
choice theorists, who routinely invoke one or the other or both determinants. Still,
this picture can be challenged. We now sketch some prominent understandings of
‘utility’and ‘welfare’, not all of which are compatible with our approach.

Sen (1977) and Weymark (1991) forcefully distinguish someone’s welfare from her
VNM utility. For them, someone’s VNM utility functions have no privileged status:
there are many other functions representing her order, some of which might better
capture her welfare in a substantive, more-than-ordinal sense. We agree —and will
add a concrete proposal of a welfare function, which will indeed not be of VNM-type.

Bell and Raiffa (1988), Nissan-Rosen (2015), Dietrich and Jabarian (2022) and
many others endorse the distinction between welfare and VNM utility. Yet for in-
stance Harsanyi, Broome (1991), Greaves (2017), and McCarthy et al. (2020) question
or even reject the distinction. Fleurbaey and Mongin (2016) take a nuanced view.

For John Harsanyi, welfare just is VNM utility. Yet his notion of welfare is not
simply ordinal: for him, welfare intensity, levels and differences are meaningful con-
cepts, captured by a suitably normalised VNM utility function. Note that, like us,
he takes ordinal evidence (a VNM order) to generate a non-ordinal welfare measure
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—but for him that measure is a VNM utility function. Unlike us, he does not dis-
tinguish between risk-attitudinal and welfare-based determinants of VNM utility: he
treats risk aversion as a by-product of diminishing marginal welfare, not as a sep-
arate psychological disposition. Against this reductive view, Bell and Raiffa (1988)
restore the conceptual independence between someone’s risk-attitudinal and welfare-
based features: it is perfectly possible to hate ‘gambling’without having diminishing
marginal welfare, or vice versa. We agree, and would add that Harsanyi’s conflation
of the two phenomena comes from cashing out risk attitudes as attitudes to risk in
outcomes rather than welfare. This ‘non-intrinsic’risk attitude is indeed influenced
by diminishing marginal welfare —although it too should not be reduced to welfare
features, being also influenced by something else, namely the intrinsic risk attitude,
as will be shown formally.

First-generation economists used to think of utility in ways perfectly independent
of any risk or risk attitude. Their term ‘utility’corresponds to our ‘welfare’or ‘in-
trinsic utility’, not to ‘VNM utility’. Accordingly, their ‘law of diminishing marginal
utility’(from consumption) does not reflect risk aversion: it is effectively a ‘law of di-
minishing marginal welfare’. Modulo terminology, their approach is in line with ours,
but leaves open how to measure welfare from ordinal data —our central problem.

Arrow (1965) and Pratt (1964), the fathers of the modern theory of risk aversion,
focus on VNM utility rather than welfare. They take someone’s VNM utility function
to be shaped entirely and solely by her risk attitude. At first, this seems to deny
the idea that VNM utility has two determinants, welfare (intrinsic utility) and risk
attitude. This impression however overlooks that Arrow-Pratt’s ‘risk attitude’is not
the intrinsic risk attitude, but a hybrid object influenced by the intrinsic risk attitude
and welfare, just like VNM utility. So, while their one-sided labels ‘risk attitude’
and ‘theory of risk aversion’has caused some conceptual confusion by suppressing
the role of welfare while stressing ‘gambling taste’, their theory stands in no formal
conflict with our analysis. In passing, we will answer a question that they leave
open: how can their measure of (non-intrinsic) risk aversion be reduced to its implicit
determinants, intrinsic risk aversion and welfare? On classical risk attitudes, see also
Baccelli (2018).

Peter Wakker (2010) takes an unorthodox, prospect-theoretic view, also endorsed
by Abdellaoui et al. (2007) and Buchak (2013). This interesting view separates
cleanly between welfare and risk attitude: while welfare affects VNM utility, the risk
attitude only affects the weighting of probabilities, within a rank-dependent expected-
utility model. Utility is thus explained by welfare alone —but not because the risk
attitude is a mere by-product of marginal welfare (as for Harsanyi) but because this at-
titude leaves is mark elsewhere than in utility. By treating utility as a purely welfare-
theoretic, not risk-attitudinal construct, the view conflicts with our two-determinant
view on VNM utility, and trivialises our question of how to measure welfare —VNM
utility itself is a measure. The view also conflicts with Arrow-Pratt’s theory, which
links VNM utility to the risk attitude —except under a radical reinterpretation of this
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theory, as a theory ‘of diminishing marginal welfare’rather than ‘of risk aversion’.

The measurement of welfare has also been studied extensively inmeasurement the-
ory, under names such as ‘measuring strength-of-preference’or ‘measuring preference-
intensity’. See in particular Krantz et al. (1971), Shapley (1975), Basu (1982), Nebel
(forth.) and for particularly general results Wakker (1988, 1989), Köbberling (2006)
and Pivato (2013). This literature pursues an interestingly different agenda, as the
evidential basis is not simply an order over alternatives, but an order R over altern-
ative pairs, called a ‘difference order’, where (x, y)R(x′, y′) means ‘a change from x

to y is at least as good as a change from x′ to y′’. A welfare measure is then a
representation of this difference order.3 Like a VNM utility function, such a welfare
measure is typically unique up to increasing affi ne transformation. But, unlike a
VNM function, it captures welfare intensity, not just welfare comparisons, and it is
derived from non-choice data, since the difference order R is not revealed by choice.
By contrast, we aim to measure welfare based on ordinal evidence, where ‘ordinal’
refers to a binary order over options, not a difference order.4

2 Beyond Bernoulli: dropping intrinsic risk neutrality

Daniel Bernoulli (1738) famously postulated that one should maximise one’s expected
welfare, not one’s expected monetary wealth. Like us, he used welfare as a primitive
object —he called it ‘utility’, but it corresponds to our ‘welfare’or ‘intrinsic utility’.
While he did not pursue our objective of making welfare observable, his welfare-
based choice principle ties welfare closely to choice, thereby making welfare partially
observable: welfare turns out to coincide with VNM utility, and is thus revealed by
choice up to the two open parameters contained in VNM utility.

Bernoulli however makes a heavy implicit assumption: the agent is neutral to
intrinsic risk, i.e., to risk in welfare. We will here drop this assumption, by allowing
any intrinsic risk attitude, as long as this attitude is constant. As we show in this
section, welfare then stays partially observable —with a third open parameter, which
measures the intrinsic risk attitude. The question of how to determine the three
parameters of welfare empirically will be postponed to Section 4.

We fix a set X of situations, in which the welfare of a given individual is to
be measured. While we could work without any assumptions on X (as shown in the
appendix), the main text takes situations to be real numbers or more generally vectors
of real numbers. Typical real-valued situations are wealth levels, health levels, or
consumption index levels. Typical vector-valued situations are consumption bundles,
wealth-health-education triples, or vectors of functionings (Sen 1985). Technically,
the main text lets X be a non-empty open connected subset of Rk for some k ≥ 1,
e.g., Rk, (0,∞)k or (0, 1)k. Readers can focus on the base-line case k = 1, so that X

3A function W of the alternatives ‘represents’ a difference order R over these alternatives if
(x, y)R(x′, y′)⇔W (x)−W (y) ≥W (x′)−W (y′) for all alternatives x, y, x′, y′.

4Someone’s choices still reveal an incomplete fragment of her difference order (Baccelli 2024).
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is a non-empty open interval, e.g., R, (0,∞) or (0, 1).

A welfare (or intrinsic utility) function is a function W : X → R, where W (x)

represents the person’s welfare in or from x. Welfare is not directly observed. In-
stead we observe ordinal comparisons between risky prospects, representing actions
or policies. Let P be the set of prospects, i.e., lotteries over X with finite support.
The observable primitive is a binary relation � on P, called a prospect order, where
‘x � y’means that x is observably at least as good as y for the individual. The source
of observation might be choice behaviour, self-assessments, third-party assessments,
or perhaps neurophysiological data.

While we interpret � andW mainly as capturing welfare comparisons resp. levels,
one can replace the welfare-based interpretation by a preference-based interpretation,
so that � and W capture preference comparisons resp. preference strength. We will
set aside the important welfare/preference distinction, and move back and forth freely
between both interpretations —which is common, but deserves a special apology in
the context of this paper.5

Let � and ∼ denote the corresponding strict and asymmetric relations; ‘x � y’
and ‘x ∼ y’mean that x is observably better than resp. as good as y for the person.6
Note that X ⊆ P, identifying any situation x ∈ X with the riskless prospect with
sure outcome x.

How can we ‘learn’W from �? The common move would identify welfare with
VNM utility. A VNM utility representation of � is a function U : X → R such that
prospects are ranked by expected utility, i.e., for all prospects p, q ∈ P, p � q ⇔
Ep(U) ≥ Eq(U). If existent, such a representation is unique up to increasing affi ne
transformation.

The common identification of welfare with VNM utility relies implicitly on the
following hypothesis, which can be attributed to Daniel Bernoulli (1738), who said
‘utility’for what we call ‘welfare’or ‘intrinsic utility’:

Intrinsic Risk Neutrality: Any prospect is as good as a risk-free welfare level
equal to the prospect’s expected welfare. Formally, for all prospects p ∈ P and sure
outcomes x ∈ X, if Ep(W ) = W (x) then p ∼ x.

By the following result, this hypothesis forces welfare to coincide with VNM utility,
under a natural well-behavedness assumption. We call a function W : X → R regular
if it is smooth7 with nowhere zero derivative W ′, and well-behaved relative to � if it
is moreover compatible with riskless comparisons, i.e., W (x) ≥W (y)⇔ x � y for all
riskless prospects x, y ∈ X.

5Note that while our label ‘welfare function’for W leans towards the welfare-based interpretation,
our other label ‘intrinsic utility function’stays neutral.

6For all p, q ∈ P, p � q if and only if p � q and not q � p, and p ∼ q if and only if p � q and
q � p.

7‘Smooth’means that W is differentiable arbitrarily many often. In the multi-dimensional case
X ⊆ Rk with k ≥ 2, W ′ is of course a vector ( d

dx1
W, ..., d

dxk
W ), and W ′ is ‘nowhere zero’ if at no

x ∈ X it is the zero vector (0, ..., 0).
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Proposition 1 Given any prospect order �, a well-behaved welfare function W sat-
isfies Intrinsic Risk Neutrality if and only if

W = U

for some VNM representation U of �.

The Bernoullian hypothesis of Intrinsic Risk Neutrality was a significant progress
at the time: it replaced the naive idea of neutrality to risk in outcomes with neutrality
to risk in welfare.

Yet it is worrying (to say the least) that welfare measures given by VNM utility
rest on a special attitude to intrinsic risk, namely neutrality. Bernoulli fixed only
one of two problems: while he rightly made welfare the ‘currency’of risk, he retained
that special attitude to risk. We will replace the Bernoullian hypothesis by a more
general hypothesis, which still locates risk at the welfare level, but now allows any
attitude to risk —neutrality, aversion or proneness —as long as this attitude is stable,
i.e., independent of the reference welfare level. Our generalised hypothesis relies on
the equivalent welfare of a prospect p ∈ P, defined as a welfare level wp achieved in
a situation that is as good as p, formally wp = W (xp) for some xp ∈ X such that
xp ∼ p. This is our hypothesis (in its basic version, further generalised later):

Constant Intrinsic Risk Attitude (CIRA): If a prospect is modified by a fixed
increase in welfare, then the equivalent welfare increases by the same amount. Form-
ally, for all ∆ > 0 and all prospects p, q ∈ P with an equivalent welfare wp resp. wq,
if p(W = w) = q(W = w + ∆) for all w ∈ R, then wq = wp + ∆.8

Fact 1: CIRA generalises the Bernoullian hypothesis of Intrinsic Risk Neutrality.

CIRA requires a ‘coherent’or ‘stable’attitude to intrinsic risk. For instance, if at
low current welfare the agent is indifferent towards a 50:50 gamble that lets her gain
2 welfare units or lose 1 welfare unit, then she stays indifferent towards this gamble
at higher welfare.

Just as Bernoulli’s Intrinsic Risk Neutrality improves on an outcome-based concept
of risk neutrality, CIRA improves on an outcome-based condition known as Constant
Absolute Risk Aversion or ‘CARA’, as we will show soon. Much later, we will present
a more systematic argument for CIRA, by deriving CIRA from two principles, namely
dynamic consistency and welfare-change-based preferences (Section 5). Be this as it
may, CIRA is not essential to our analysis, since our theorem can be generalised to a
more flexible condition than CIRA (Section 5).

By being more general than the Bernoulli’s Intrinsic Risk Neutrality, CIRA allows
form a wider class of welfare functions. While Intrinsic Risk Neutrality forces one to

8Equivalently, intrinsic risk premia are invariant to welfare translations (assuming any prospect’s
equivalent welfare is unique). Here, the intrinsic risk premium of a prospect p ∈ P with a (unique)
equivalent welfare wp is the gap Ep(W )− wp between expected and equivalent welfare.
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measure welfare by VNM utility (Proposition 1), CIRA implies the following welfare
measurement. We will assume that the prospect order � is regular, i.e., has a regular
VNM representation U .

Proposition 2 Given a regular prospect order �, a well-behaved welfare function W
satisfies CIRA if and only if

W = log(ρU + 1)/ρ

for some VNM representation U of � and some ρ ∈ R (the ‘intrinsic risk proneness’)
such that ρU + 1 > 0.

If ρ = 0, then ‘log(ρU + 1)/ρ’stands for U (= limρ→0 log(ρU + 1)/ρ). The case
ρ = 0 is the special case of Intrinsic Risk Neutrality, treated in Proposition 1. In this
sense, Proposition 2 generalises Proposition 1.

The parameter ρ measures the attitude to intrinsic risk, i.e., to risk in welfare:

• if ρ = 0, the agent is intrinsic risk neutral, as VNM utility equals welfare,

• if ρ > 0, the agent is intrinsic risk prone, as VNM utility is convex in welfare
(since welfare is concave in VNM utility)

• if ρ < 0, the agent is intrinsic risk averse, as VNM utility is concave in welfare
(since welfare is convex in VNM utility).

Although the exact value of ρ is usually empirically underdetermined, the sign of
ρ —and hence the qualitative intrinsic risk attitude —is often observable. This is so
because ρ must satisfy ρU + 1 > 0. Specifically, the agent is observably

• intrinsic risk neutral if supU =∞ and inf U = −∞, as then necessarily ρ = 0,

• weakly intrinsic risk prone if supU = ∞ and inf U 6= −∞, as then necessarily
ρ ≥ 0,

• weakly intrinsic risk averse if supU 6= ∞ and inf U = −∞, as then necessarily
ρ ≤ 0.

Excursion: How CIRA can explain violations of CARA

CIRA contrasts with a well-known condition, which operates at the level of outcomes
rather than welfare, and rests on the standard notion of a prospect’s certainty equi-
valent rather than equivalent welfare:9

Constant Absolute Risk Aversion (CARA), defined for X ⊆ R: If a prospect
is modified by a fixed increase in outcomes, then the equivalent outcome increases by

9A certainty equivalent of p ∈ P is a situation xp ∈ X such that p ∼ xp.
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the same amount. Formally, for all ∆ > 0 and all prospects p, q ∈ P with a certainty
equivalent xp resp. xq, if p(x) = q(x+ ∆) for all x ∈ R, then xq = xp + ∆.10

CARA is implausible, as is confirmed by empirical violations (Chiappori and
Paiella 2011). Why? If a risky wealth prospect is translated upwards, then it moves
into a region of higher wealth and thus lower marginal welfare, assuming diminishing
marginal welfare. So the new prospect contains less risk in welfare, i.e., less risk in a
subjectively relevant sense; this leads to a smaller risk premium, assuming intrinsic
risk aversion — in violation of CARA. For instance, a 50-50 lottery between wealth
$0 and wealth $1,000,000 contains huge risk in welfare: W (0)�W (1, 000, 000). But
the translated 50-50 lottery between wealth $10.000.000 and $11.000.000 contains
almost no risk in welfare: W (10, 000, 000) ≈ W (11, 000, 000). So the first lottery is
equivalent to a wealth level close to the worse outcome $0, the second to a wealth
level close to the average outcome $10, 500, 000, violating CARA.

CIRA can offer a systematic explanation for violations of CARA: CIRA rules out
CARA, as long as welfare is not of a special form. To state this result, we call a
real function on a subset of R linear if it is given by x 7→ ax + b for some a, b ∈ R,
exponential if it is given by x 7→ aebx + c for some a, b, c ∈ R with a, b 6= 0, and
logarithmic if it is given by x 7→ a log(bx+ c) for some a, b, c ∈ R with a, b 6= 0.

Fact 2 (informal statement11): CIRA rules out CARA provided the welfare function
is neither linear nor exponential nor logarithmic nor a logarithmic function of an
exponential function.

The natural Bernoullian response to empirical violations of CARA would be to
make welfare the currency of risk, i.e., to replace CARA with CIRA. We follow this
line. Modern choice theorists instead replace CARA with some other outcome-level
hypothesis, such as ‘hyperbolic absolute risk aversion’ (HARA). This different re-
sponse makes sense in light of the different objective: most choice theorists aim to
represent or predict choice, while we aim to make welfare indirectly observable. The
former objective precludes using conditions like CIRA that refer to unobservables,
whereas our objective requires using conditions that relate the relevant unobserv-
able (W ) to the observable (�), following the established scientific methodology for
identifying unobservables.12

10To make ‘p(x)’and ‘q(x + ∆)’well-defined even if x resp. x + ∆ fall outside X, identify any
lottery over X (⊆ R) with its extension to R, which is zero within R\X. Equivalently to CARA, risk
premia are invariant to translations of outcomes (assuming certainty equivalents are unique). Here,
the risk premium of a prospect p ∈ P with a (unique) certainty equivalent is the gap p− xp between
p’s expectation p =

∑
x∈X p(x)x and certainty equivalent xp.

11The exact characterisation is stated in the appendix as Proposition 5.
12Applied economists, statisticians, psychologists, physicists and other empirical scientists all

routinely rely on this approach: they all make inferences about relevant unobservables from observ-
ables via theoretic hypotheses linking the two. Of course, each field has its own type of observables,
unobservables and hypotheses.
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3 Explaining standard utility and risk attitude by in-
trinsic utility and risk attitude

This section explores the structure of classic VNM utility and Arrow-Pratt risk at-
titude, by decomposing both quantities into their two fundamental determinants,
welfare and intrinsic risk attitude. Our decompositions will show that standard util-
ity and risk attitude are hybrid constructs, resulting from an interplay of two distinct
ingredients. At this stage, the decomposition will still be partly unobservable, be-
cause welfare has still some open parameters in Proposition 2. Unique identification
will be achieved later.

Arrow-Pratt’s classic theory measures risk attitudes as follows, by assuming the
one-dimensional case X ⊆ R:

Definition 1 The classical (or Arrow-Pratt) risk proneness of a regular prospect
order �, for X ⊆ R, is the (well-defined13) function ρAP = ρAP,� = U ′′

U ′ , where U is
any VNM representation of �. If constant, ρAP is identified with its single value.

One can measure the intrinsic risk attitude analogously, by simply replacing out-
comes with welfare levels, which meanwhile allows us to lift the restriction to the
one-dimensional case:

Definition 2 The intrinsic risk proneness of a regular prospect order � w.r.t. a well-
behaved welfare function W is the (well-defined14) function ρW = ρW,� = d2U/dW 2

dU/dW ,
where U is any VNM representation of �. If constant, ρW is identified with its single
value.

The formula for W in Proposition 2 implies that U = (eρW − 1)/ρ, and hence
that ρW = ρ, by simple algebra. So, Proposition 2 has two corollaries. First, we can
replace ρ with ρW in Proposition 2:

Corollary 1 Given a regular prospect order �, any well-behaved welfare function W
satisfying CIRA leads to a constant intrinsic risk proneness ρW and takes the form
W = log(ρWU + 1)/ρW .

Second, VNM utility can be explained by two determinants:

Corollary 2 Every regular prospect order � has a VNM utility representation U

determined by welfare and the intrinsic risk attitude via

U = (eρWW − 1)/ρW ,

13As � is regular, U′′
U′ is well-defined, i.e., U exists and is twice differentiable with U ′ 6= 0.

14Well-definedness of d
2U/dW2

dU/dW
requires that U be twice differentiable in W with nowhere zero first

derivative in W , more precisely that U be writeable as φ(W ) for a (unique) function φ : Rg(W )→ R
that is twice differentiable with nowhere zero φ′ (in which case dU/dW stands for φ′(W ) and d2U/dW 2

stands for φ′′(W )). Well-definedness follows from the regularity of � andW (in fact, φ′ is everywhere
positive, as can be seen via Lemma 1).
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for any well-behaved welfare function W satisfying CIRA.

If ρW = 0, i.e., if � is intrinsic risk neutral, then ‘(eρWW − 1)/ρW’stands for W
(= limρ→0 log(eρW − 1)/ρ).

Like VNM utility, the classical risk attitude can also be explained in terms of an
interplay between welfare and the intrinsic risk attitude, this time without having to
postulate CIRA:

Proposition 3 The classical risk attitude of any regular prospect order �, with X ⊆
R, is determined by welfare and the intrinsic risk attitude via

ρAP =
W ′′

W ′
+W ′ρW ,

for any well-behaved welfare function W .

Thus the classical risk proneness ρAP = U ′′

U ′ , i.e., the growth rate of marginal
utility, is the sum of

• a ‘welfare component’W ′′W ′ , the growth rate of marginal welfare, and

• a ‘risk component’W ′ρW , the intrinsic risk proneness weighted by marginal
welfare. The weighting by marginal welfare reflects the fact that risk in welfare
matters only to the extent that welfare varies, i.e., to the extent W ′.

As Proposition 3 does not require CIRA, the intrinsic risk attitude ρW can be
non-constant, and VNM utility U need not equal (eρWW − 1)/ρW . Still U must obey
a differential equation: U ′′

U ′ = W ′′

W ′ + W ′ρW . So VNM utility stays determined by
welfare (W ) and intrinsic risk attitude (ρW ). Thus the central conceptual point —
that classical utility has two distinct determinants —does not hinge on CIRA.

4 Uniquely revealed welfare and intrinsic risk attitude

So far, the welfare function W is only partially revealed by the observable � —and
this partial underdetermination is inherited by the intrinsic risk proneness ρW and
by the decompositions of VNM utility U and classic risk proneness ρAP into their
two determinants W and ρW . More precisely, the welfare function W in Proposition
2 has three remaining degrees of freedom: ρ and the two degrees of freedom implicit
in the choice of VNM representation U . Surprisingly, full uniqueness can be achieved
by adding two simple hypotheses about welfare, namely a range condition and a
normalisation condition. We begin with the range condition:

Full-range: There exist arbitrarily good or bad situations. That is, for all welfare
levels w ∈ R there is a situation x ∈ X such that W (x) = w.

Full-range is a richness assumption on the set of situations considered: this set
should include situations of arbitrary quality, be these situations realistic or merely
theoretic. Note that VNM utility could still be bounded below or above.

11



Implicitly, Full-range is also a condition on the scale on which welfare is measured:
that scale should include all real numbers as meaningful welfare levels. We return
to measurement-theoretic issues later, when we will generalise Full-range to allow for
other measurement scales.

To normalise the welfare measure, we consider a fixed reference situation x ∈ X,
representing for instance a ‘poverty point’. A function from X to R (such as W ) is
normalised if at the reference point x it takes the value 0 and has a derivative of
size 1. The derivative of W , or marginal welfare, captures how small changes of the
situation affect welfare.15

Normalisation: The welfare function W is normalised.

Normalisation requires measuring welfare on a scale that sets welfare to 0 and mar-
ginal welfare size to 1 at the reference point. Measurement scales are conventions,
not substantive assumptions. The scale fixes the meaning of numbers, i.e., inform-
ally, the mapping from numbers to their intended meanings. One can always scale
welfare such that Normalisation holds: every well-behaved welfare function satisfying
CIRA and Full-range can be transformed into one that also satisfies Normalisation,
by applying an increasing affi ne transformation. The fact that rescaling a welfare
function changes welfare levels and welfare differences does not make welfare levels
and differences meaningless. Rather it makes the meaning of levels and differences
scale-relative: statements such as ‘welfare is 2’ and ‘welfare rises by 3’ can have
meanings, which are fixed by the chosen scale. The axiom of Normalisation becomes
less innocent when one engages in interpersonal comparisons of welfare levels and/or
differences, because meanings cannot be fixed in more than one way. Later we will
discuss this issue, and address it by generalising Normalisation.

We now state our central theorem, whereby there exists a unique, and therefore
revealed, welfare function satisfying our hypotheses. It is obtained by choosing U
and ρ in particular ways in the formula of Proposition 2. The result will assume
that the prospect order � is broad-ranging. This means that for any situations there
exist much better or much worse situations, more precisely: for any x, y ∈ X with
x � y there exists a z ∈ X such that z 1

2
y 1

2
� x or y � z 1

2
x 1

2
. Here, ‘z 1

2
y 1

2
� x or

y � z 1
2
x 1

2
’means that z is either so good that its 50-50 mixture with y beats x or so

bad that its 50-50 mixture with x loses to y. This condition holds under most models
of preferences under risk, including all HARA models.16

Definition 3 A prospect order �
15 In the basic case X ⊆ R, the size W ′ is the absolute value |W ′|, which normally equals W ′ as

W ′ > 0, i.e., as ‘more is better’. In the general case X ⊆ Rk (k ≥ 1), the size of W ′ =
(
dW
dx1

, . . . , dW
dxk

)
is the length ‖W ′‖.
16For all distinct x, y ∈ X and all t ∈ [0, 1], xty1−t denotes the prospect p ∈ P such that p(x) = t

and p(y) = 1− t.

12



• reveals welfare function W if W is the only well-behaved welfare function satis-
fying CIRA, Full-range and Normalisation, in which case W is denoted W�,

• reveals intrinsic risk proneness ρ if � reveals welfare function W� and ρ = ρW�,
in which case ρ is denoted ρ�.

Theorem 1 Every regular and broad-ranging prospect order � reveals a welfare func-
tion and a constant intrinsic risk proneness, given by

W� = log(ρ�U + 1)/ρ�

and

ρ� =


−1

supU (< 0) if supU 6=∞ (intrinsic risk aversion)
−1

inf U (> 0) if inf 6= −∞ (intrinsic risk proneness)
0 if supU =∞ and inf U = −∞ (intrinsic risk neutrality)

where U is the (unbounded) normalised VNM representation of �.

In practice, one should choose the VNM function U to fit the data �, and then
derive W� and ρ� via Theorem 1. For instance, U could be one of the many HARA
utility functions, which often enjoy empirical confirmation, and are indeed unbounded.

The classical and intrinsic risk attitudes, ρAP and ρW , can both be calculated
from the VNM representation U , but in very different ways: while ρAP (= U ′′

U ′ ) is
derived locally, from the curvature of U , ρ� is derived globally, from the range of U .

5 Application, discussion and generalisation

In this section, we first sketch how our welfare measure can be combined with em-
pirical data to yield concrete welfare assessments. We then turn to social welfare —
the starting point of the Harsanyi-Sen debate about whether VNM utility measures
welfare. This will then finally lead to a closer analysis of our three hypotheses, and
to a generalisation of these hypotheses and the theorem.

5.1 Empirical application

Our formula for welfare (Theorem 1) can be applied using empirically supported VNM
utility functions. For example, for X = (0,∞), assume the data support decreasing
absolute risk aversion with a constant relative risk aversion of η ≥ 0 (‘CRRA’). Many
studies confirm this picture, although the value of η is highly context-dependent. The
agent’s normalised utility function is then of the well-known CRRA type:

U(x) =
x

1− η

((x
x

)1−η
− 1

)
for all x ∈ X.
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If η = 1, this formula is interpreted as U(x) = x log x
x (= limη→1

x
1−η

((
x
x

)1−η − 1
)
).

By Theorem 1, the agent’s revealed intrinsic risk proneness is17

ρ� =
1− η
x

,

and her revealed welfare is18

W�(x) = x log
x

x
for all x ∈ X.

So the CRRA model implies logarithmic welfare. Interestingly, welfare is independent
of the relative risk aversion η. Thus the debate about the right value of η does not
affect welfare —it only affects VNM utility, hence choice. Here welfare is subject to less
measurement uncertainty than VNM utility, despite being revealed more indirectly.
Other models than the CRRA model —including other HARA models —lead to other
concrete formulas for welfare and intrinsic risk proneness via Theorem 1.

5.2 Social welfare

Part of why measuring individual welfare matters is that it allows us to measure social
welfare, as a guide to policy making. We will focus on utilitarian social welfare:
social welfare is sum-total individual welfare. If John Harsanyi and followers are
right, then individual welfare is VNM utility, and so one should maximise sum-total
VNM utility. If the critics such as Amartya Sen and John Weymark are right, then
individual welfare differs from VNM utility, and so one should maximise total welfare
rather than total VNM utility. We now operationalise the latter view via Theorem 1.

Consider a society of individuals i = 1, ..., n (n ≥ 2). Interpret X as a set of
social alternatives. Each individual i’s (well-behaved) prospect order �i on X reveals
her welfare function Wi = log(ρiUi + 1)/ρi, where ρi is her revealed intrinsic risk
proneness and Ui is her normalised VNM utility function. In many applications,
X = X1 × · · · × Xn, where Xi contains i’s possible situations (e.g., consumption
bundles) and where �i and Ui are only sensitive to Xi, hence are essentially an order
or function on Xi rather than X.

What goes wrong when maximising total utility
∑

i Ui (or total weighted utility
19)

rather than total welfare
∑

iWi? Under the plausible assumption that individuals
are intrinsic risk averse, each Ui is a concave transformation of Wi. Thus, maxim-
ising total utility (or weighted utility) means maximising total concavely transformed
welfare —an approach that prioritises the worse-off, and is known as prioritarianism,
a famous alternative to utilitarianism (e.g., Adler 2019). So, ironically, the dedicated

17Check this by distinguishing between the cases η > 1 (where supU <∞), η < 1 (where inf U >

−∞) and η = 1 (where supU =∞ and inf U = −∞).
18Since W (x) = log(ρU(x)+1)

ρ
=

log
(
ρ 1
ρ (( xx̄ )ρx̄−1)+1

)
ρ

=
log(( xx̄ )ρx̄)

ρ
= x̄ log x

x̄
.

19Total weighted utility is
∑
i αiUi for some weights αi > 0.
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utilitarian John Harsanyi is effectively a prioritarian, and his ‘utilitarian theorem’
effectively supports prioritarianism.20

How should a utilitarian evaluate risky prospects in P rather than riskless situ-
ations in X? This is notoriously controversial. Ex-post utilitarians maximise total
expected ex-post welfare

∑
i Ep(Wi). Ex-ante utilitarians maximise total ex-ante wel-

fare
∑

iWi(p), where Wi is the extension of i’s welfare function Wi to P such that
Wi(p) = Wi(xp) for all p ∈ P with certainty equivalent xp ∈ X. Either version of
utilitarianism respects exactly one of the two conditions in Harsanyi’s ‘utilitarian’
theorem: ex-post utilitarianism respects social VNM rationality, while ex-ante utilit-
arianism respects Pareto. Utilitarians thus face a hard choice in the face of risk, but
both approaches can be operationalised using our welfare measure.

5.3 Generalisation

We now discuss possible objections to the three hypotheses, leading us to generalise
the hypotheses and theorem. We begin with Full-range, followed by Normalisation,
CIRA, and the theorem.

Full-range discussed and generalised

As measurement theorists will notice, Full-Range is not only a richness condition on
X (that forces X to contain arbitrarily good or bad situations) but also implicitly a
condition on the choice of measurement scale for welfare: that scale should have the
range R, so that all real numbers are meaningful as welfare levels. Scales with smaller
range are also imaginable. For instance, a scale with range R can be transformed
exponentially into one with range R+, by replacing (‘relabelling’) any welfare level
w ∈ R with ew ∈ R+. To allow many measurement scales, we fix a non-empty open
interval D ⊆ R of meaningful welfare levels, e.g., D = R or D = (0,∞) or D = (0, 1),
and impose the following hypothesis (which reduces to Full-range if D = R):

Full-rangeD: There are situations of arbitrary quality in D, i.e., {W (x) : x ∈ X} =

D.

Normalisation discussed and generalised

This condition sets welfare to 0 and marginal welfare size to 1, at a given reference
point x, for instance a poverty level. More generally, one can fix numbers r ∈ D and
s > 0, and place the following requirement, where we call a function from X to R
(r, s)-normalised if at the reference point x it takes the value r and has a derivative
of size s:

Normalisationr,s: The welfare function W is (r, s)-normalised.

20By this theorem, a Pareto condition and social VNM rationality imply maximising the sum of
(suitably scaled) individual VNM utility functions.
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What speaks for requiring Normalisationr,s instead of Normalisation, the special
case with r = 0 and s = 1? Normalisation is questionable when one makes inter-
personal comparisons of welfare, since Normalisation treats everyone as having the
same welfare (and marginal welfare size) at x. Nothing is wrong with assuming Nor-
malisation for for a given person —this just requires choosing a measurement scale
on which ‘0’and ‘1’have particular meanings adapted to that person (and such a
scale always exists, as noted earlier). But assuming Normalisation for many persons
simultaneously leads to questionable welfare comparisons at x, since ‘0’and ‘1’can
be given just one meaning at once. By contrast, Normalisationr,s works even in an
interpersonal context, since r and s can be set differently for different persons.

In some contexts, Normalisation is defensible. Why? First of all, recall that
choices of normalisation are an old problem in welfare economics, although it is usu-
ally raised for VNM utility rather than welfare. Already Harsanyi was bothered by the
sensitivity of interpersonal utility comparisons and total utility in society to normal-
isation choices. Different proposals exist. Some fix utility at two reference outcomes,
e.g., to 0 and 1 (e.g., Isbell 1959, Segal 2000, Adler 2012, 2016). Others fix the min-
imal and maximal utility (Karni and Weymark 2024). Fleurbaey and Zuber (2021)
instead fix utility and marginal utility at a reference outcome. Our Normalisation
follows their approach, applying it to welfare rather than VNM utility.

As we will explain, Normalisation is appropriate in three contexts:

1. Affi nely measurable welfare: Suppose we pursue a lower ambition by aiming to
measure welfare on an affi ne rather than absolute scale. The informational content
of W is then more limited, lying between absolute and ordinal information. Welfare
levels and differences become meaningless, while welfare difference ratios stay signi-
ficant —which creates a formal similarity between welfare and VNM utility, without
erasing the fundamental difference.21

For affi ne welfare, Normalisation is unproblematic, since every welfare function
is affi nely equivalent to one satisfying Normalisation. While the utilitarian social
welfare function

∑
iWi becomes meaningless, as it requires interpersonal comparisons

of differences, other social welfare functions stay available, notably the Nash social
welfare function, which requires only affi ne welfare.22

2. Contextualised welfare: Suppose the question is not what welfare the individuals
have intrinsically, but what welfare they should be treated as having in a given social
context, e.g., a context of welfare aggregation, commodity allocation, or policy choice.

21Welfare difference ratios and VNM utility difference ratios are both unique, but differ in value
and meaning. While ‘W (x)−W (y)

W (x′)−W (y′) = 2’means that welfare changes twice as much from x to y as

from x′ to y′, ‘U(x)−U(y)
U(x′)−U(y′) = 4’means something rather obscure, about a difference ratio for a hybrid

object (VNM utility) combining welfare and intrinsic risk attitude.
22The latter is defined as

∏
i(Wi−Wi(x̄))1/n, and is restricted to situations in {x ∈ X : Wi(x) ≥ 0

for all i}. Bossert and Weymark (2004) review various social welfare functions and their underlying
informational requirements.
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For such a contextualised notion of welfare, Normalisation says this: individuals
should be treated as having identical welfare (of 0) and marginal welfare size (of
1) at the reference point x. This sort of scaling has a remarkable implication: it
ensures that Pigou-Dalton transfers increase the utilitarian social welfare. Let us
be precise. Assume X ⊆ R and the reference point x ∈ X represents a ‘poverty
point’ below/above which someone counts as poor/rich. Let social situations be
vectors (x1, ..., xn) ∈ Xn, where xi represents i’s situation. Consider social welfare∑

iWi(xi) for x ∈ Xn. Then, once all Wi satisfy Normalisation and are increasing
and concave, social welfare

∑
iWi(xi) increases by transferring resources from rich

to poor persons.23 So, Normalisation gives utilitarianism an unexpected egalitarian
appeal. This egalitarian argument for Normalisation is introduced and developed
axiomatically in Fleurbaey and Zuber (2021), in a version for VNM utility instead of
welfare. In their words, Normalisation leads to ‘fair utilitarianism’.

3. Locally objective welfare: Our analysis is open to ‘objective’ and ‘subjective’
notions of welfare (Fleurbaey and Blanchet 2013). Informally, objective welfare is de-
termined by ‘objective’features like wealth or consumption levels, subjective welfare
by ‘subjective’features like tastes for (or happiness from) wealth or consumption. As
long as situations in X are ‘objective situations’, i.e., represent the objective features,
objective welfare is determined by the situation alone, while subjective welfare is also
influenced by subjective features such as tastes. A notion of welfare can be hybrid, so
that welfare depends partly on objective and partly on subjective features, where the
extent of objectivity can vary across situations. One can interpret Normalisation as
requiring welfare to be objective (at least) at the reference point x: at x, the person’s
welfare and marginal welfare size depend on objective features alone. For instance, a
situation of misery x might lead objectively to a certain (low) well-being and (high)
marginal welfare size, so that only non-miserable situations give room for subjective
tastes to influence welfare. The slogan is: in situations of objective misery everyone
is alike welfare-wise. Subjective features, such as whether one prefers Beethoven’s or
Bach’s music, influence welfare only once extreme misery is overcome, i.e., once basic
needs are satisfied. On this assumption, Normalisation is justified, subject to making
the scaling convention that 0 (1) stands for the universal welfare (marginal welfare
size) at x.

In fact, it suffi ces that welfare be effectively locally objective at x: at x, welfare
can still depend partly on subjective features as long as these features coincide for
everyone at x —so that welfare at x depends on subjective but universal features. So,
welfare can depend on subjective tastes, as long as everyone dislikes the situation of
misery x equally, i.e., ‘needs’subjectively the basic needs equally. This makes welfare
effectively locally objective or ‘locally intersubjective’.24

23That is, for all social situations x, y ∈ Xn and individuals j, k, if xj < yj < x < yk < xk,
yj − xj = xk − yk, and xl = yl for everyone else l, then

∑
iWi(xi) <

∑
iWi(yi).

24Even if welfare is objective (really or effectively, locally or globally), people may differ in intrinsic
risk attitudes, affecting their VNM utility functions.

17



The general idea is that the objective circumstances take over at x, making sub-
jective differences inexistent (true local objectivity) or irrelevant to well-being (effect-
ive local objectivity). The plausibility of this idea depends partly on the notion of
situation in X. Mere wealth levels are perhaps too uninformative ‘situations’for the
welfare level to become objective at some ‘poverty point’x. Things might change if
situations are detailed consumption vectors, or entire ‘lives’, or Sen-type functioning
vectors. The more information is packed into situations —perhaps including quasi-
subjective features —the less room is left for subjectivity in welfare assessments.

Stigler and Becker’s (1977) thesis ‘De gustibus non est disputandis’ and Sen’s
(1985) programme of evaluating fine-grained functioning vectors are two very different
attempts at objective evaluations through refining the description of situations.

CIRA discussed and generalised

CIRA requires a constant attitude to intrinsic risk, i.e., to risk in welfare rather than
outcomes —a welfare-level condition that can explain well-documented violations of
the outcome-level condition CARA (see Fact 2 and Proposition 5).

One can defend CIRA by deriving it from two basic assumptions on how prospects
are ordered. How? When facing a lottery p ∈ P, the agent is in some status-quo
situation, e.g., an initial wealth level. To make the status quo explicit, consider an
entire order structure, i.e., a family (�z)z∈X containing the prospect order �z held in
any status quo z ∈ X. In a status quo z ∈ X, each lottery p ∈ P induces a welfare-
change lottery, denoted p∆W |z, defined as the finite-support lottery over R such that
the probability of any welfare change w ∈ R is p∆W |z(w) = p(W (·) −W (z) = w),
the probability that final welfare minus initial welfare equals w. An order structure
(�z)z∈X is

(a) welfare-change-based if, for all prospects p, q, p′, q′ ∈ P and stati quo z, z′ ∈ X,
if p∆W |z = p′∆W |z′ and q∆W |z = q′∆W |z′ then p �z q ⇔ p′ �z′ q′,

(b) dynamically consistent or status-quo independent if �z is the same for each
status quo z ∈ X.

Proposition 4 If an order structure (�z)z∈X satisfies (a) and (b), then the pro-
spect order �z≡ � satisfies CIRA, assuming it is regular and W is well-behaved and
satisfies Full-range.

Condition (b) follows orthodox rational choice theory. Condition (a) follows
Kahnemann-Tversky’s popular approach of modelling decisions as choices between
changes rather than final levels, but in an (arguably more plausible) version based
on welfare changes rather than outcome changes. Kahneman and Tversky’s idea is
that real agents tend to conceptualise options in terms of changes rather than final
consequences, since changes represent what ‘happens’in the agent’s perception.

Be this as it may, if one finds CIRA too restrictive, one can replace it with a
more flexible hypothesis that can also accommodate other welfare-level hypotheses,
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such as decreasing intrinsic risk aversion, or constant relative intrinsic risk aversion.
We define the generalised condition as requiring a constant attitude to risk in some
welfare-based quantity, i.e., in some transformation of welfare. More precisely, given
a welfare transformation, which can be any smooth function τ from the mentioned
interval D of meaningful welfare levels onto R with τ ′ > 0, we require this:

CIRAτ : If all transformed welfare outcomes of a prospect rise by the same amount,
then the transformed equivalent welfare also rises by this amount. Formally, Rg(W ) ⊆
D and, for all ∆ > 0 and all prospects p, q ∈ P with equivalent welfare wp resp. wq,
if p(τ(W ) = t) = q(τ(W ) = t+ ∆) for all t ∈ R then τ(wq) = τ(wp) + ∆.

CIRAτ reduces to CIRA if τ(w) = w for all w ∈ D = R. If instead τ(w) = logw

for all w ∈ D = (0,∞), then CIRAτ requires constant aversion to risk in welfare
ratios, i.e., constant relative intrinsic risk aversion.

The theorem generalised

Even in their generalised form, our hypotheses lead to a unique welfare measure:

Theorem 2 Given a regular and broad-ranging prospect order �, there exists a unique
well-behaved welfare function W satisfying CIRAτ , Full-rangeD and Normalisationr,s
(for given parameters τ,D, r, s), namely the function

W = τ−1(log(ρsτ ′(r)U + 1)/ρ+ τ(r)),

where U : X → R is the (unbounded) normalised VNM representation of � and

ρ =


−1

sτ ′(r) supU < 0 if supU 6=∞
−1

sτ ′(r) inf U > 0 if inf 6= −∞
0 if supU =∞ and inf U = −∞.

Theorem 1 is a special case of Theorem 2, obtained if D = R, r = 0, s = 1,
and τ is the identity transformation, because the three hypotheses then reduce to the
original ones, and the formulas reduce to those in Theorem 1.25

For instance, if D = (0,∞) and τ = log, so that CIRAτ requires a constant
relative intrinsic risk attitude, then the formula for W reduces to W = r(ρsr U +1)1/ρ,
so that welfare a geometric function of VNM utility.

6 Conclusion

We have shown that plausible working hypotheses allow one to operationalise the
diffi cult notion of welfare or intrinsic utility. This operationalisation contrasts with

25 If ρ = 0 then the expression log(ρsτ ′(r)U + 1)/ρ in the formula for W stands for sτ ′(r)U
(= limρ→0 log(ρsτ ′(r)U + 1)/ρ)).
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the popular one in terms of VNM utility —which rests on a less plausible working
hypothesis, namely Intrinsic Risk Neutrality. Our approach allows one to decompose
ordinary utility and risk attitude into its two determinants: welfare and intrinsic
risk attitude. This makes welfare and intrinsic risk attitude indirectly observable,
and suggests explaining the empirical finding of decreasing absolute risk aversion
in terms of an interplay of decreasing marginal welfare and constant intrinsic risk
attitude. We have given formal and informal reasons for adopting our hypotheses
as working assumptions, but also presented generalised hypotheses that still make
welfare observable, via a generalised formula.

Social welfare analysis can now use a more satisfactory observable measure of
individual welfare than VNM utility, and it can disentangle welfare aspects from
risk-attitudinal aspects, instead of both aspects being mixed unrecognisably within
VNM utility. Critics of VNM utility in social welfare analysis, such as Amartya
Sen and followers, so far failed to operationalise their position and to address the
unobservability objection.

An rising challenge within social welfare theory is the social evaluation of risk —
the ex-ante and ex-post approach represent two opposed views. A systematic analysis
will ultimately need to spell out the social attitude to intrinsic risk. This could be
achieved by aggregating not only individual into social welfare, but also individual
into social intrinsic risk attitude. Since both individual characteristics —welfare and
intrinsic risk attitude —are ‘contained’in individual preferences under risk, this ap-
proach can be pursued within the standard framework, without introducing unob-
servables.

A Appendix

A.1 The generalised setup with arbitrary alternatives

The main text took the set of alternatives X to be a (non-empty open connected)
subset of Rk for some k ≥ 1. Our definitions, hypotheses and results continue to hold
for an arbitrary non-empty setX, except for those about the classical Arrow-Pratt risk
attitude (Definition 1, Fact 2, and Propositions 3 and 5). This generalisation requires
generalised notions of ‘regular’and ‘normalised’functions on X, since derivatives are
undefined in general. Here are the details, for interested readers:

Regularity generalised. In the main text, a function W : X → R counted as
‘regular’if it is smooth with nowhere zero derivative. In general, the set of regular
functions is any given set F of functions f : X → R such that for all f ∈ F , the
range Rg(f) = {f(x) : x ∈ X} is an open interval and, for each strictly increasing
φ : Rg(f) → R, φ ◦ f ∈ F ⇔ φ is smooth with φ′ > 0. The main text’s regularity
notion is a special case, as we will soon see.

Normalisation generalised. In the main text, a function W : X → R counted as
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‘normalised’if it has value 0 and a derivative of size 1 at the reference point x. In
general, the set of normalised functions is any given set N of functions f : X → R
such that (i) for all f ∈ N , f(x) = 0, (ii) for all f ∈ N and all smooth transformations
φ : Rg(f) → R with φ(0) = 0, we have φ ◦ f ∈ N ⇔ φ′(0) = 1, (iii) each function
f ∈ F is normalisable, i.e., has an increasing affi ne transformation in N . Normalised
functions have the right value at x by (i), and intuitively the same ‘abstract derivative’
at x by (ii).26 We must also generalise the related notion of an (r, s)-normalised
function f : X → R, for r ∈ R and s > 0. In the main text, ‘(r, s)-normalised’
means that f(x) = r and f has a derivative of size s at x. In general, it means that
f = sg + r for some normalised function g ∈ N .

The concrete setup of the main text is indeed a special case:

Lemma 1 The conditions on sets F and N of regular resp. normalised functions
hold if (as in the main text) X is a non-empty open connected subset of Rk with
k ≥ 1 and

F = {f : X → R : f is smooth, f ′(x) 6= 0 for all x ∈ X}
N = {f : X → R : f(x) = 0, f ′(x) exists and is of size 1}.

Proof. Let X, F and N be as in the main text. We first establish the conditions on
F (part 1), then those on N (part 2).

1. Fix an f ∈ F . Rg(f) is an interval, since continuous images of connected sets
are connected. This interval is open, because X is open and f ′(x) 6= 0 for all x ∈ X.
Now fix a strictly increasing φ : Rg(f) → R. By basic calculus, if φ is smooth with
φ′ > 0, then φ ◦ f ∈ F .

Conversely, assume φ ◦ f ∈ F . We must show that φ is smooth with φ′ > 0. Put
g = φ ◦ f .

Claim 1 : If X ⊆ R (i.e., k = 1), then f−1 exists and is smooth.

Let X ⊆ R. As f ∈ F , the derivative f ′ exists and is continuous and nowhere zero.
So f ′ is everywhere positive or everywhere negative. Thus f is strictly monotonic,
hence invertible. To show that h = f−1 is smooth, we show by induction that for all
n ≥ 1 the nth derivative h(n) exists and is a ratio a

b of smooth functions a, b : X → R
with b > 0. First consider n = 1. As f ′ > 0, the function, h′ = (f−1)′ exists and
equals 1

f ′(h) , a ratio of the claimed form. Now let n > 1 and assume that h(n−1) exists

and takes the claimed form, say h(n−1) = a
b . By implication, h

(n) exists and equals
a′b−b′a
b2

, another ratio of the claimed form. Q.e.d..

Claim 2 : If X ⊆ R (i.e., k = 1), then φ is smooth with φ′ > 0.

Assume X ⊆ R. As g = φ ◦ f and f is (by Claim 1) invertible, we have φ = g ◦ h,
where h = f−1. The smoothness of φ can be deduced from the fact that φ = g ◦h and
26 In (ii), φ ◦ f intuitively has the same abstract derivative at x as f if and only if φ′(0) = 1.

Intuitive reason: (φ ◦ f)′(x) = φ′(f(x))f ′(x) = φ′(0)f ′(x), assuming abstract derivatives behave like
ordinary ones, and (i) holds.
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that g and (by Claim 1) h are smooth. How? In short, φ′ exists and equals h′g′(h);
so φ′′ exists and equals h′′g′(h) +h′(g′(h))′ = h′′g′(h) +h′2g′′(h); and so on for higher
derivatives of φ (we skip the full inductive argument).

To see why φ′ > 0, fix a w ∈ Rg(f). Pick an x ∈ X such that f(x) = w. We
have g′(x) = φ′(w)f ′(x) since g′(x) = (φ ◦ f)′(x) = φ′(f(x))f ′(x) = φ′(w)f ′(x). So,
as g′(x) and f ′(x) are non-zero and (by ordinal equivalence of f and g) of same sign,
we have φ′(w) > 0. Q.e.d.

Claim 3 : In general, φ is smooth with φ′ > 0 (completing the proof).

Now we allow X to be multi-dimensional: X is any non-empty open connected
subset of Rk with k ≥ 1. Let t ∈ Rg(f). We must show that, at t, φ is smooth with
φ′ > 0. Pick an x ∈ f−1(t). Since f ′(x) 6= 0, we may pick a coordinate j ∈ {1, ..., k}
such that df

dxj
(x) 6= 0. As f is smooth and f ′ is nowhere zero, there is an open

interval X̃ containing xj such that, for all y ∈ X̃, (x1, ..., xj−1, y, xj+1, ..., xk) ∈ X

and df
dxj

(x1, ..., xj−1, y, xj+1, ..., xk) 6= 0. Consider f as a function of the jth coordinate

in X̃. That is, consider the function f̃ : X̃ → R, y 7→ f(x1, ..., xj−1, y, xj+1, ..., xn).
Let φ̃ be the restriction of φ to Rg(f̃) (⊆ Rg(f)). We now replace the primitives X,
f , φ and F with, respectively, X̃, f̃ , φ̃ and F̃ = {s : X̃ → R : s is smooth & s′(x) 6= 0

for all x ∈ X̃}. Note that we indeed have f̃ ∈ F̃ (show this using that f ∈ F) and
φ̃ ◦ f̃ ∈ F̃ (show this using that φ ◦ f ∈ F). As X̃ is one-dimensional, Claim 2 applies
to these modified primitives. So, φ̃ is smooth with φ̃′ > 0. Thus, as φ coincides with
φ̃ on Rg(f̃), φ is smooth with φ′ > 0 on Rg(f̃), hence at t.

2. We now show all three conditions on N :

• Condition (i) holds by definition of N .

• To show (iii), fix an f ∈ N and a smooth φ : Rg(f) → R with φ(0) = 0.
If φ′(0) = 1, then φ ◦ f ∈ N , since φ ◦ f(x) = φ(0) = 0, and since (φ ◦
f)′(x) exists (as f ′(x) and φ′ exist) with ‖(φ ◦ f)′(x)‖ = ‖φ′(f(x))f ′(x)‖ =

|φ′(f(x))| ‖f ′(x)‖ = 1 × 1 = 1. If instead φ′(0) 6= 1, then φ ◦ f 6∈ N , because
‖(φ ◦ f)′(x)‖ 6= 1.

• To show (iii), fix an f ∈ F . The increasing affi ne transformation g = 1
‖f ′(x)‖(f−

f(x)) belongs to N , since g(x) = 0, and g′(x) exists (as g′(x) exists) with
‖g′(x)‖ = 1

‖f ′(x)‖ ‖f
′(x)‖ = 1. �

A.2 Proof of all propositions and Fact 2

Depending on one’s taste, one can read the following proofs either with the main
text’s concrete setup in mind or with the generalised setup in mind —except of course
for the few results about the classic risk attitude, which hold for the concrete setup
only.

Proof of Proposition 1. Fix a prospect order � and a well-behaved welfare function
W . First, if W VNM represents �, i.e., if � ranks prospects by expected welfare,
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then Intrinsic Risk Neutrality holds obviously. Conversely, assume Intrinsic Risk
Neutrality. We must show that W VNM represents �. We fix p, q ∈ P and will
prove that p � q ⇔ Ep(W ) ≥ Eq(W ). As W is regular, Rg(W ) is an interval. So,
Ep(W ),Eq(W ) ∈ Rg(W ), and thus there exist x, y ∈ X such that W (x) = Ep(W )

and W (y) = Eq(W ). By Intrinsic Risk Neutrality, x ∼ p and y ∼ q. So, p � q

is equivalent to x � y, hence to W (x) ≥ W (x) (as W is compatible with riskless
comparisons), i.e., to Ep(W ) ≥ Eq(W ), as desired. �

Some notation and lemmas will prepare our next proofs.

Notation. Given a welfare function W , let PW be the set of welfare prospects, i.e.,
finite-support lotteries over Rg(W ) rather than X. To each prospect p ∈ P corres-
ponds a welfare prospect in PW , denoted pW , where for each w ∈W we define pW (w)

as p(W = w) (= p({x ∈ X : W (x) = w})).

Lemma 2 Assume � has a VNM representation U , and W : X → R is ordinally
equivalent to U . Then:

(a) For all prospects p, q ∈ P, pW = qW ⇒ p ∼ q.

(b) In particular, we can define an order �W on PW by letting a �W b if and only
if p � q for some (hence by (a) any) p, q ∈ P such that pW = a and qW = b.

(c) �W has a VNM representation given by the (strictly increasing) function φ :

Rg(W )→ R such that U = φ ◦W .

(d) �W satisfies CARA if and only if � and W satisfy CIRA.

(e) In particular, if CIRA holds, φ is linear or strictly concave or strictly convex.

Proof. Let �, U and W be as assumed.

(a) Given the assumptions, the argument is (informally) that if p and q have the
same welfare prospect (i.e., pW = qW ), then they have the same ‘utility prospect’
(as utility is a one-to-one function of welfare), and hence the same expected utility,
implying that p ∼ q. Q.e.d.

(b) The order �W is well-defined, as its definition does not depend on the choice
of p and q by (a). Q.e.d.

(c) Let φ be as specified. For all p ∈ P, we have Ep(U) = EpW (φ), since

Ep(U) =
∑
x∈X

p(x)U(x) =
∑
w∈R

∑
x∈X:W (x)=w

p(x)U(x)

=
∑
w∈R

 ∑
x∈X:W (x)=w

p(x)

φ(w)

=
∑
w∈R

pW (w)φ(w) = EpW (φ).
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The claim now follows from the observation that, for any pW and qW in PW (where
p, q ∈ P), pW �W qW is equivalent to p � q, hence to Ep(U) ≥ Eq(U), which reduces
to EpW (φ) ≥ EqW (φ). Q.e.d..

(d) First assume �W satisfies CARA. To show CIRA, consider any ∆ > 0, any
p, p′ ∈ P, and any ρ, ρ′ ∈ X, such that p ∼ ρ, p′ ∼ ρ′, and p(W = w) = p′(W = w+∆)

for each w ∈ R. Then pW ∼W ρW , p′W ∼W ρ′W , and pW (w) = p′W (w + ∆). So, as
�W satisfies CARA, ρ′W = ρW + ∆, i.e., W (ρ′) = W (ρ) + ∆. This establishes CIRA.

Conversely, assume CIRA. Consider any ∆ > 0, a, a′ ∈ PW , and t, t′ ∈ Rg(W )

such that a ∼W t, a′ ∼W t′, and a(w) = a′(w + ∆) for all w ∈ R (where a(w) stands
for 0 if w 6∈ Rg(W ) and a′(w + ∆) stands for 0 if w + ∆ 6∈ Rg(W )). Pick p, p′ ∈ P
and ρ, ρ′ ∈ X such that pW = a, p′W = a′, W (ρ) = t and W (ρ′) = t′. Then p ∼ ρ,
p′ ∼ ρ′, and p(W = w) = p′(W = w + ∆) for each w ∈ Rg(W ). So, by CIRA,
W (ρ′) = W (ρ) + ∆, i.e., t′ = t+ ∆. This shows that �W satisfies CARA. Q.e.d.

(e) Assume CIRA. The property established in (d) can be shown to imply that
the risk premium has the same sign for all non-certain prospects, i.e., is always zero
or always positive or always negative. This easily implies that U is linear or strictly
concave or strictly convex, respectively. �

The next lemma is a well-known building block of the classical theory of risk
aversion after Arrow (1965) and Pratt (1964), and will later be applied to the order
�W in Lemma 2.

Lemma 3 If an order on the set of finite-support lotteries over a given real interval
has a smooth VNM representation with everywhere positive derivative, then it satisfies
CARA if and only if it has a VNM representation given by w 7→ 1

ρ(eρw − 1) for some
ρ ∈ R.

If ρ = 0, then ‘1ρ(eρw−1)’of course stands for w (= limρ→0
1
ρ(eρw−1)). Although

this lemma is well-known, we sketch the argument for completeness.

Proof. Consider an order �∗ on the set P∗ of finite-support lotteries over a given
interval I ⊆ R, with a smooth VNM representation φ. For each ρ ∈ R let φρ : I → R
be the function w 7→ 1

ρ(eρw − 1). The proof goes in two steps.

Claim 1 : �∗ satisfies CARA if and only if there exists a ρ ∈ R such that φ
solves the differential equation ‘f ′′ = ρf ′’on I, the solutions of which are the affi ne
transformations of φρ.

By the fundamental result of Arrow (1965) and Pratt (1964), �∗ satisfies CARA
if and only if the function φ′′/φ′ is constant, which implies the ‘if and only if’claim.
The set of solutions to the differential equation ‘f ′′ = ρf ′’(on I) is well-known:

• If ρ 6= 0, then the solutions are the affi ne transformations of the function w 7→
eρw.

• If ρ = 0, so that “f ′′ = ρf ′’reduces to ‘f ′′ = 0’, then the solutions are the affi ne
transformations of the function w 7→ w.
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So, whether ρ 6= or ρ = 0, the solutions are the affi ne transformations of φρ. Q.e.d..

Claim 2 : If φ′ is everywhere positive, then �∗ satisfies CARA if and only if there
exists a ρ ∈ R such that φρ VNM represents �∗.

Assume φ′ is everywhere positive. Then φ and φρ are two increasing functions,
hence are increasing transformations of one another. By Claim 1, �∗ satisfies CARA
if and only if there exists a ρ ∈ R such that φρ and φ are (now increasing) affi ne
transformations of one another, or equivalently such that φρ (like φ) VNM represents
�∗. �

Proof of Proposition 2. Consider any regular � and well-behaved W .
1. In this part we assume that W = log(ρU +1)/ρ for a VNM representation U of

� and a ρ ∈ R such that ρU + 1 > 0, and we prove that W satisfies CIRA. Note first
that U = (eρW − 1)/ρ. Thus, U = φρ ◦W , where φρ is the function on Rg(W ) given
by w 7→ (eρw − 1)/ρ. Let �W be the order over welfare prospects defined in Lemma
2. By Lemma 2(c), φρ VNM represents �W . So �W satisfies CARA by Lemma 3.
This implies CIRA by Lemma 2(d). Q.e.d.

2. Conversely, assume CIRA. We show the existence of a VNM representation
U of � and a ρ ∈ R such that ρU + 1 > 0 and W = log(ρU + 1)/ρ. Define �W
and the transformations φρ : Rg(W ) → R (ρ ∈ R) as before. Being regular, � has
a regular VNM representation Ũ : X → R. As Ũ and W are regular and ordinally
equivalent, Ũ = φ ◦W for a smooth transformation φ : Rg(W ) → R with φ′ > 0.
φ VNM represents �W by Lemma 2(c). CIRA implies that �W satisfies CARA by
Lemma 2(d). Hence, by Lemma 3, there exists a ρ ∈ R such that φρ VNM represents
�W . As φρ and φ both VNM represent �W , φρ is an increasing affi ne transformation
of φ. So, the function U := φρ ◦ W is an increasing affi ne transformation of Ũ
(= φ ◦W ). Hence, not only Ũ but also U VNM represents �. We have ρU + 1 > 0,
as ρU + 1 = ρ(φρ ◦W ) + 1 > ρ(−1/ρ) + 1 = 0. Finally, W = φ−1

ρ ◦U = log(ρU + 1)/ρ.
�

Proof of Proposition 3. Assume X ⊆ R. Let � be regular and W well-behaved. As
� is regular, it has a regular VNM representation U . As W and U are ordinally
equivalent and regular, the (unique) function φ : Rg(W ) → R such that U = φ(W )

is smooth with φ′ > 0. Differentiation yields

U ′ = φ′(W )W ′ and U ′′ = φ′′(W )W ′2 + φ′(W )W ′′.

Hence the classical risk proneness ρAP = U ′′

U ′ is given by

ρAP =
φ′(W )W ′′ + φ′′(W )W ′2

φ′(W )W ′
=
W ′′

W ′
+
φ′′(W )

φ′(W )
W ′ =

W ′′

W ′
+ ρWW

′. �

Proof of Proposition 4. Assume an order structure (�z) satisfying (a) and (b), and
let � ≡ �z be regular and W well-behaved. Let ∆, p, wp, q, wq be as in CIRA. Let
p(W = w) = q(W = w + ∆) for all w ∈ R. We must show that wq = wp + ∆. By
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(a), there exists an order �∗ over welfare-change lotteries (i.e., finite-support lotteries
on R) such that p̃ �z̃ q̃ ⇔ p̃∆W |z̃ �∗ q̃∆W |z̃ for all p̃, q̃ ∈ P and z̃ ∈ X. Pick
situations z, z′ ∈ X such that W (z′) = W (z) + ∆ (they exist by Full-range). Pick
certainty equivalents xp, xq ∈ X of p resp. q (they exist as � is regular). Now p ∼ xp,
and so p ∼z xp, whence p∆W |z ∼∗ W (xp) − W (z) = wp − W (x0) (identifying the
welfare change W (xp)−W (z) = wp −W (x0) with a riskless welfare-change lottery).
Analogously, q ∼ xq, and so q ∼z′ y, whence q∆W |z′ ∼∗ W (xq)−W (z′) = wq−W (z′).
Further, p∆W |z = q∆W |z′ , since q’s welfare prospect equals p’s shifted by ∆, and z′’s
welfare equals z’s shifted by ∆. In sum, p∆W |z ∼∗ wp−W (z), q∆W |z′ ∼∗ wq−W (z′),
and p∆W |z = q∆W |z′ . Thus wp −W (z) ∼∗ wq −W (z′). So wp −W (z) = wq −W (z′),
since indifferent welfare changes are identical (as � is regular andW is well-behaved).
Thus, wq − wp = W (z′)−W (z) = ∆. �

We now formally restate and prove Fact 2, which claims that CIRA can explain
violations of CARA whenever the welfare function is not of a special type. More
precisely:

Fact 2 (formal statement): For any regular prospect order � with X ⊆ R, CARA is
violated if CIRA holds for a well-behaved welfare function W that is neither linear nor
exponential nor logarithmic nor a logarithmic function of an exponential function.

Fact 2 follows from a more general characterisation:

Proposition 5 Given a regular prospect order � and a well-behaved welfare function
W satisfying CIRA, where X ⊆ R, CARA holds if and only if W is (i) a linear or
exponential function with ρW = 0, or (ii) the base-eρW logarithm of such a function
with ρW 6= 0.

For instance, if ρW = −1 (a form of intrinsic risk aversion), then CARA holds pre-
cisely if welfare takes the formW = log(V )

log(e−1)
= − log(V ) for some linear or exponential

function V .

The proof of Proposition 5 will draw on the following well-known result, which is
an obvious variant of Lemma 3 (without ‘positive derivative’restriction):

Lemma 4 If an order on the set of finite-support lotteries over a given real interval
has a smooth VNM representation U , then it satisfies CARA if and only if U is linear
or exponential.

Proof of Proposition 5. Assume X ⊆ R, � is regular, W is well-behaved, and
CIRA holds. By CIRA, ρW is constant (see Corollary 1).

1. First, assume CARA. We show that W takes one of the special forms. CIRA
implies that there is a VNM representation U of � such that W = log(ρWU +1)/ρW ,
interpreted as W = U if ρW = 0 (Proposition 2 and Corollary 1). Meanwhile CARA
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implies that U is linear or exponential (Lemma 4). So, if ρW = 0, then W (= U) is
linear or exponential, while if ρW 6= 0, then

W = log(ρWU + 1)/ρW = log(ρWU + 1)/ log(eρW ),

i.e., W is the base-eρW logarithm of a function that is linear (if U is linear) or expo-
nential (if U is exponential). Thus W takes one of the special forms.

2. Now assume W takes one of these forms. By CIRA, � is VNM representable
by a function U that we can scale such that U = W if ρW = 0 and U = keρWW

for a k ∈ R of same sign as ρW if ρW 6= 0 (see Corollary 2). First assume ρW = 0.
Then U = W , and W is linear or exponential. So U is linear or exponential, implying
CARA (Lemma 4).

Now assume ρW 6= 0. Then U = keρWW , and W = 1
ρW

log V for a linear or
exponential function V . Thus

U = eρWW = e
ρW

1
ρW

log V
= elog V = V.

So U is linear or exponential, again implying CARA (Lemma 4). �

A.3 Proof of Theorem 1

The proof of Theorem 1 will use Proposition 2 as well as two further lemmas.

Lemma 5 If � has a VNM representation U , then � is broad-ranging if and only if
U is unbounded, i.e., supU =∞ or inf U = −∞.

Proof. Assume � has a VNM representation U .

1. First let U be unbounded. Without loss of generality, suppose supU =∞ (an
analogous proof works if instead inf U = −∞). To prove that � is broad-ranging,
consider situations x, y ∈ X with x � y. So U(x) ≥ U(y). As supU = ∞, there
is a situation z ∈ X such that U(z) − U(x) > U(x) − U(y). It easily follows that
1
2U(z) + 1

2U(y) > U(x). So, as U VNM represents �, z 1
2
y 1

2
� x.

2. Conversely, let � be broad-ranging. In particular, not all situations in X are
equally good. Pick any x � y in X, and write ∆ = U(x)−U(y) (> 0). For j = 0, 1, ...

define situations xj and yj with U(xj) − U(yj) ≥ 2j∆ recursively as follows. First,
x0 = x and y0 = y. Clearly U(x)−U(y0) ≥ 20∆ (in fact, ‘≥’could be replaced by ‘=’).
Now consider j ≥ 0 and suppose xj and yj are defined, with U(xj) − U(yj) ≥ 2j∆.
As � is broad-ranging, there exists a g ∈ X such that g 1

2
y 1

2
� x (‘case 1’) or there

exists a b ∈ X such that y � b 1
2
x 1

2
(‘case 2’).

First assume case 1. Put xj+1 = g and yj+1 = yj . So, 1
2U(xj+1) + 1

2U(yj+1) >

U(xj), and thus

1

2
U(xj+1)− 1

2
U(yj+1) > U(xj)− U(yj+1) = U(xj)− U(yj) ≥ 2j∆.
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Hence U(xj+1)− U(yj+1) ≥ 2j+1∆, as desired.

Now assume case 2 but not case 1. Put xj+1 = xj and yj+1 = b. So, 1
2U(xj+1) +

1
2U(yj+1) < U(yj), and thus

1

2
U(yj+1)− 1

2
U(xj+1) < U(yj)− U(xj+1) = U(yj)− U(xj) ≤ 2j∆.

Hence again U(xj+1)− U(yj+1) ≥ 2j+1∆, as desired.

As j → ∞, we have 2j∆ → ∞, and so U(xj) − U(yj) → ∞. So, supU = ∞ or
inf U = −∞. �

Lemma 6 For any regular prospect order � and any welfare function of the form
W = log(ρU+1)/ρ for a VNM representation U of � and a ρ ∈ R such that ρU+1 >

0,

(a) W satisfies Full-range if and only if inf U < 0 < supU and

ρ =


−1

supU (< 0) if supU 6=∞
−1

inf U (> 0) if inf U 6= −∞
0 if supU =∞ and inf U = −∞,

assuming � is broad-ranging (so that U is unbounded by Lemma 5),

(b) W satisfies Normalisation if and only if U is normalised.

Proof. Let �, U and ρ be as specified.

(a) Assume � is broad-ranging. So U is unbounded (Lemma 5). Since U is regular,
Rg(U) is an open interval. Thus Rg(U) = (a, b) where a = inf U and b = supU . Note
that −∞ ≤ a < b ≤ ∞, where at most one of a and b is finite.

If it is not the case that a < 0 < b, then 0 6∈ Rg(U), and thus 0 6∈ Rg(W ); hence
both sides of the claimed equivalence are violated, and thus the equivalence holds.
Now assume that a < 0 < b. As Rg(U) = (a, b) and W = log(ρU + 1)/ρ, Rg(W ) is
the open interval with the boundaries

inf W = lim
u↓a

log(ρu+ 1)/ρ and supW = lim
u↑b

log(ρu+ 1)/ρ.

This uses that log(ρu+1)/ρ is a smooth and strictly increasing function of u, whether
ρ is negative, positive, or zero (if ρ = 0 then log(ρu + 1)/ρ stands for u, as usual).
Since Full-range means that Rg(W ) = R, we have

Full-range holds ⇔ limu↓a log(ρu+ 1)/ρ = −∞ and limu↑b log(ρu+ 1)/ρ =∞.

Thus, if ρ is positive, the claimed equivalence between Full-range and ρ = − 1
a holds

because

Full-range holds ⇔ limu↓a log(ρu+ 1) = −∞ and limu↑b log(ρu+ 1) =∞
⇔ ρa+ 1 = 0 and ρb+ 1 =∞
⇔ ρ = − 1

a and b =∞
⇔ ρ = − 1

a ,
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where we could drop ‘and b = ∞’ since this is implied by a’s finiteness and U’s
unboundedness. Analogously, if ρ is negative, then the claimed equivalence between
Full-range and ρ = −1

b holds because

Full-range holds ⇔ limu↓a log(ρu+ 1) =∞ and limu↑b log(ρu+ 1) = −∞
⇔ ρa+ 1 =∞ and ρb+ 1 = 0

⇔ a = −∞ and ρ = −1
b

⇔ ρ = −1
b .

Finally, if ρ = 0, then the claimed equivalence between Full-range and ρ = 0 holds
because the right side (ρ = 0) holds by assumption and the left side (Full-range) holds
since W = U and thus Rg(W ) = Rg(U) = R.

(b) We must show that W is normalised if only if U is normalised. This follows
from two observations. First, as W = 1

ρ log(ρU + 1), W takes the value 0 exactly
where U takes the value 0. Second,

W ′ =
1

ρ
log′(ρU + 1)(ρU + 1)′ =

1

ρ(ρU + 1)
ρU ′ =

1

ρU + 1
U ′,

so that W ′ and U ′ coincide wherever W (or equivalently U) is 0. �

Proof of Theorem 1. Let � be regular and broad-ranging. As � is regular, it is
VNM representable by a regular function. Note that any regular function has a
normalised increasing affi ne transformation. So, there is a regular and normalised
VNM representation U of �. It is unbounded by Lemma 5. Note that inf U <

0 < supU , because Rg(U) is an open interval (by regularity) and contains 0 (by
normalisation). So we may define

ρ =


−1

supU (< 0) if supU 6=∞
−1

inf U (> 0) if inf U 6= −∞
0 if supU =∞ and inf U = −∞.

Further, we define the welfare functionW = log(ρU+1)/ρ. W is well-defined because
ρU +1 > 0, by the definition of ρ and the fact that (since Rg(U) is open) U is strictly
larger than inf U and smaller than supU .

We now show that W is the only well-behaved welfare function satisfying CIRA,
Full-range and Normalisation. This will complete the proof, as it implies not only
that there is a revealed measure, namely W� = W , but also that (by Corollary 1)
the revealed intrinsic risk proneness ρ� is the constant ρ defined above.

Firstly, W is well-behaved and satisfies the hypotheses: well-bahavedness holds
since W is a smooth and positively differentiable transformation of the well-behaved
function U , CIRA holds by Proposition 2, and Full-range and Normalisation hold by
Lemma 6.

Secondly, let W̃ be any well-behaved welfare function satisfying the hypotheses.
We prove that W̃ = W . By Proposition 2, CIRA implies W̃ = log(ρ̃Ũ + 1)/ρ̃ for
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some VNM representation Ũ of � and some ρ̃ ∈ R such that ρ̃Ũ + 1 > 0. By Lemma
6 (applied with Ũ and ρ̃ rather than U and ρ), Normalisation implies Ũ = U , and
Full-range implies ρ̃ = ρ given that � is broad-ranging. So W̃ = W . �

A.4 Proof of Theorem 2 via Theorem 1

The following lemma prepares the reduction of Theorem 2 to Theorem 1.

Lemma 7 For any prospect order �, any instance of the generalised conditions Full-
rangeD, Normalisationr,s and CIRAτ , any welfare function W such that Rg(W ) ⊆ D
(ensuring that τ ◦ W is defined), and any increasing affi ne transformation W ∗ of
τ ◦W ,

(a) W is well-behaved if and only if W ∗ is well-behaved,

(b) W satisfies Full-rangeD if and only if W ∗ satisfies Full-range,

(c) W satisfies Normalisationr,s if and only ifW ∗ satisfies Normalisation, assuming
W ∗ = (τ ◦W − τ(r))/(sτ ′(r)),

(d) W satisfies CIRAτ if and only if W satisfies CIRA.

Proof. Consider D, r, s, τ ,W and W ∗ as specified. Let φ : D → R be the increasing
affi ne transformation of τ such that W ∗ = φ ◦W . Since τ is a smooth and positively
differentiable function from D onto R, so is φ. By basic analysis, it follows that φ−1

exists (so that W = φ−1 ◦W ∗) and that φ−1 is a smooth and positively differentiable
function from R onto D.

(a) Recall that well-behavedness is the conjunction of compatibility with riskless
comparisons and regularity. So the claim follows from two facts:

• W ∗ is compatible with riskless comparisons if and only if W is so, since W and
W ∗ are ordinally equivalent.

• W ∗ is regular if and only ifW is regular, sinceW andW ∗ are smooth positively
differentiable transformations of one another.

(b) We have to show that Rg(W ) = D ⇔ Rg(W ∗) = R. Note that Rg(W ∗) =

R ⇔ Rg(τ ◦W ) = R, as W ∗ is an increasing affi ne transformation of τ ◦W . So it
suffi ces to show that Rg(W ) = D ⇔ Rg(τ ◦W ) = R. This equivalence holds because,
firstly, if Rg(W ) = D then Rg(τ ◦W ) = τ(Rg(W )) = τ(D) = R, and secondly, if
Rg(W ) 6= D then Rg(τ ◦W ) = τ(Rg(W )) 6= τ(D) = R.

(c) Suppose W ∗ = (τ ◦W − τ(r))/(sτ ′(r)). In other words, W ∗ = φ ◦W where
φ = (τ(·) − τ(r))/(sτ ′(r)). As a preliminary, consider the smooth transformation φ̃
defined on D̃ = {(d − r)/s : d ∈ D} by φ̃(t) = φ(st + r) for all t ∈ D̃. We have
φ̃(0) = 0 and φ̃′(0) = 1, since φ̃(0) = φ(r) = 0 and φ̃′(t) = sτ ′(ts+r)

sτ ′(r) for all t ∈ D̃.
First, assumeW satisfies Normalisationr,s. ThenW = sW̃+r for some normalised

W̃ . Note that W̃ = (W − r)/s and that Rg(W̃ ) = {(t− r)/s : t ∈ D} = D̃. We have
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φ̃ ◦ W̃ = W ∗, since

φ̃ ◦ W̃ = φ̃ ◦ [(W − r)/s)] = φ ◦W = W ∗.

Since W̃ is normalised and since W ∗ = φ̃ ◦ W̃ where φ̃ is smooth with φ̃(0) = 0 and
φ̃′(0) = 1, W ∗ is also normalised.

Conversely, assumeW ∗ is normalised. Since φ is invertible, so is φ̃ (= φ(s×·+r)).
Further, as φ̃ is the composition of φ with the mapping t 7→ st + r, φ−1 is the
composition of the latter mapping with φ̃−1, i.e., φ−1 = sφ̃−1(·) + r. We thus have
W = φ−1(W ∗) = sφ̃−1(W ∗) + r. To show that W satisfies Normalisationr,s, it is
thus suffi cient to show that φ̃−1(W ∗) is normalised. This follows from the fact that
W ∗ is normalised and the fact that φ̃−1 is smooth with φ̃−1 > 0, (φ̃−1)(0) = 0 and
(φ̃−1)′(0) = 1. The second fact holds because φ̃ is smooth with φ̃′ > 0, φ̃(0) = 0 and
φ̃′(0) = 1.

(d) By assumption, there are a > 0 and b ∈ R such that W ∗ = aτ(W ) + b, or
equivalently W = τ−1((W ∗ − b)/a).

First let W satisfy CIRAτ . To show that W ∗ satisfies CIRA, fix a ∆ > 0 and
prospects p, q ∈ P with equivalent welfare w.r.t. W ∗ denoted w∗p resp. w∗q , and assume
p(W ∗ = w) = q(W ∗ = w + ∆) for all w ∈ R. We must show that w∗q = w∗p + ∆.
Since W ∗ = aτ(W ) + b, the prospects p and q have equivalent welfare wp resp. wq
w.r.t. W satisfying w∗p = aτ(wp) + b resp. w∗q = aτ(wq) + b. For all t ∈ R, we have
p(τ(W ) = t) = q(τ(W ) = t+ ∆/a), because

p(τ(W ) = t) = p(aτ(W ) + b = at+ b) = p(W ∗ = at+ b)

q(τ(W ) = t+ ∆/a) = q(aτ(W ) + b = at+ b+ ∆) = q(W ∗ = at+ b+ ∆)

and because p(W ∗ = w) = q(W ∗ = w + ∆) for all w ∈ R. We can now apply
CIRAτ to W and to ∆/a (rather than ∆). This yields τ(wq) = τ(wp) + ∆/a. Thus
aτ(wq) + b = aτ(wp) + b+ ∆, i.e., w∗q = w∗p + ∆.

Conversely, suppose W ∗ satisfies CIRA. To show that W satisfies CIRAτ , note
first that Rg(W ) ⊆ D by assumption. Next, consider a ∆ > 0 and prospects p, q ∈ P
with equivalent welfare wp resp. wq, and assume p(τ(W ) = t) = q(τ(W ) = t + ∆)

for all t ∈ R. We prove that τ(wq) = τ(wp) + ∆. As W ∗ = aτ(W ) + b, p and q have
equivalent welfare w.r.t. W ∗ given by w∗p = aτ(wp) + b resp. w∗q = aτ(wq) + b. For
all w ∈ R, we have p(W ∗ = w) = q(W ∗ = w + a∆), because

p(W ∗ = w) = p(aτ(W ) + b = w) = p (τ(W ) = (w − b)/a)

q(W ∗ = w + a∆) = q(aτ(W ) + b = w + a∆) = q (τ(W ) = (w − b)/a+ ∆)

and because p(τ(W ) = t) = q(τ(W ) = t + ∆) for all t ∈ R. So, by CIRA applied to
W ∗ and to a∆ (rather than ∆), w∗q = w∗p + a∆, i.e., aτ(wq) + b = aτ(wp) + b + a∆.
Thus, τ(wq) = τ(wp) + ∆. �

Proof of Theorem 2. Assume � is regular and broad-ranging, and consider the gen-
eralised hypotheses CIRAτ , Full-rangeD and Normalisationr,s for given D, τ, r, s.
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1. In this part, we fix a well-behaved welfare function W satisfying the gener-
alised hypotheses, and we prove that W has the specified form. By Lemma 7, the
transformed welfare function

W ∗ = (τ ◦W − τ(r))/(sτ ′(r)) (1)

is well-behaved and satisfies the original hypotheses CIRA, Full-range and Normal-
isation. So, by Theorem 1, W ∗ = log(ρ�U + 1)/ρ�, where U is the (unbounded)
normalised VNM representation of �, and ρ� is as given in Theorem 1. Defining ρ
as in Theorem 2, and noting that ρ� = ρsτ ′(r), we obtain

W ∗ = log(ρsτ ′(r)U + 1)/(ρsτ ′(r)). (2)

By (1) and (2),

(τ ◦W − τ(r))/(sτ ′(r)) = log(ρsτ ′(r)U + 1)/(ρsτ ′(r)).

Solving this equation for W yields W = τ−1(log(ρsτ ′(r)U + 1)/ρ+ τ(r)), as claimed.
Q.e.d..

2. In this part, we show that the welfare function

W = τ−1(log(ρsτ ′(r)U + 1)/ρ+ τ(r)), (3)

with U and ρ defined as in Theorem 2, is well-behaved and satisfies CIRAτ , Full-
rangeD and Normalisationr,s. By Lemma 7, this is the case if the transformed welfare
function W ∗ defined by (1) is well-behaved and satisfies CIRA, Full-range and Norm-
alisation. By plugging the expression defining W into the one defining W ∗, and then
simplifying, one obtains

W ∗ = log(ρsτ ′(r)U + 1)/(ρsτ ′(r)) = log(ρ�U + 1)/ρ�,

where ρ� is as in Theorem 1, or equivalently ρ� = ρsτ ′(r). So, by Theorem 1, W ∗ is
indeed well-behaved and satisfies CIRA, Full-range and Normalisation. �
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