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Abstract

I propose a relevance-based independence axiom on how to aggregate individual

yes/no judgments on given propositions into collective judgments: the collective judg-

ment on a proposition depends only on people’s judgments on propositions which

are relevant to that proposition. This axiom contrasts with the classical indepen-

dence axiom: the collective judgment on a proposition depends only on people’s

judgments on the same proposition. I generalize the premise-based rule and the

sequential-priority rule to an arbitrary priority order of the propositions, instead of

a dichotomous premise/conclusion order resp. a linear priority order. I prove four

impossibility theorems on relevance-based aggregation. One theorem simultaneously

generalizes Arrow’s Theorem (in its general and indifference-free versions) and the

well-known Arrow-like theorem in judgment aggregation.
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based and sequential-priority rules, priority graph, aggregation of non-binary evalua-
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1 Introduction

The judgment aggregation problem consists in merging many individuals’ judgments

(‘yes’ or ‘no’) on some interconnected propositions into collective judgments on these

propositions. Judgment aggregation (‘JA’) has wide applications. A classic example

is decision-making in a jury in court, where the jurors have to merge their judgments

on three controversial propositions: (i) the defendant has broken the contract; (ii)

the contract is legally valid; (iii) the defendant is guilty (e.g., Kornhauser and Sager

[26], List and Pettit [30]). These propositions are interconnected because legal doc-

trine prescribes that (iii) holds if and only if (i) and (ii) both hold. Another example

1The author thanks the referees for very detailed and helpful comments. The paper has been

completely rewritten since its 2006 version. It was presented at the Workshop on Logic and Collective

Decision Making (Lille, France, 2007), the Social Choice Colloquium (Tilburg University, 2007),

the Workshop on Judgment Aggregation (Karlsruhe University, 2007) and the Economics Research

Seminar (ETH Zurich, 2007). The author gratefully acknowledges support by the French Agence

Nationale de la Recherche (ANR-12-INEG-0006-01) and by the Nuffield Foundation (under its New

Career Development Fellowship).
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is preference aggregation. Here we merge people’s judgments on propositions of the

kind ‘option  is weakly preferable to option ’ — in short:  — for various pairs

of options  and  (where these propositions are interconnected via conditions such

as transitivity). In yet another example, we merge people’s estimates of some vari-

ables (such as GDP, prices and unemployment). In other words, we merge people’s

judgments on propositions of the sort ‘variable  takes value ’ for various pairs of a

variable  and a possible value  (where these propositions might be interconnected

via some macroeconomic equations). Similarly, we might merge grades which people

give to some politicians, where the possible grades might be ‘good’, ‘excellent’ and

‘bad’ (as in Balinski and Laraki’s [1] voting theory). In other words, we merge peo-

ple’s judgments on propositions of the sort ‘politician  is of quality ’ for pairs of a

politician  and a possible grade . The last two examples are versions of the eval-

uation aggregation problem, in which we merge people’s positions on some matters:

people’s estimates of variables, people’s grades given to politicians, people’s degrees

of belief in some events, etc. (e.g., Rubinstein and Fishburn [42], Dietrich and List

[12], Dokow and Holzman [16]).

Evidently, many ‘special’ aggregation problems can be stated as JA problems — but

does JA theory have to say something interesting about them? JA theory has been

particularly successful at generalizing theorems and insights from preference aggre-

gation theory, including Arrow’s Theorem in its indifference-free version. JA theory

has been less successful at addressing some other aggregation problems, including

preference aggregation in its general (indifference-permitting) form, the aggregation

of (non-binary) evaluations, and the aggregation of judgments on propositions with

a more complex priority structure than a dichotomous premise/conclusion structure.

Perhaps the main reason is that JA theory draws strongly on the classic but controver-

sial axiom of proposition-wise independence: the collective judgment on a proposition

should be determined solely by people’s judgments on this proposition. This axiom

denies that other propositions can be relevant. I call a proposition  ‘relevant’ to an-

other  if people’s judgments on  matter for forming the collective judgment on , so

that the latter should draw on the former. Proposition-wise independence implicitly

assumes a narrow notion of relevance: each proposition is relevant only to itself. The

implausibility of the axiom and its narrow relevance notion becomes evident in our

introductory examples:

(a) In the jury example, the popular premise-based procedure violates proposition-

wise independence and treats the two ‘premise propositions’ (i) and (ii) as rel-

evant to the ‘conclusion proposition’ (iii), since the collective judgment on (iii)

is derived from jurors’ judgments on (i) and (ii). (More precisely, the collective

endorses (iii) if and only if each premise proposition is endorsed by major-

ity.) There are many other examples of propositions between which there are

relevance connections of a premise-conclusion type, making proposition-wise

independence implausible.

(b) Now consider the preference agenda, whose propositions take the form  and

express betterness comparisons between options. Whether the proposition 

is collectively endorsed should be sensitive to people’s preferences between 

and . Someone’s preference between  and  is captured by his judgments

on two propositions,  and  (for instance, indifference is captured by

‘yes’ judgments on both  and ). So the propositions  and 
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are both relevant to . Yet proposition-wise independence prevents people’s

judgments on  (‘yes’ or ‘no’) from affecting the social judgment on 

— with absurd consequences.2 This makes the axiom implausible and much

stronger than Arrow’s axiom of ‘independence of irrelevant alternatives’. Both

axioms become equivalent only after excluding indifferences.

(c) Finally, consider the evaluation agenda for a group in search of ‘positions’ on

some ‘matters’ (e.g., estimates of some variables, grades of some politicians,

etc.). It is natural to construct the collective position on a matter from peo-

ple’s positions on this matter: the collective estimate of a variable might be an

arithmetic average of people’s estimates of this variable; the collective grade of

a politician might be this politician’s median grade; and so on. Such aggre-

gation rules satisfy a matter-wise independence axiom: the collective position

on a matter depends only on people’s positions on this matter. But they vio-

late proposition-wise independence: if for instance politician Smith’s collective

grade is his median grade, then the collective judgment (yes or no) on whether

‘he is good’ depends not just on people’s judgments on this proposition, but

on people’s judgments on all propositions about Smith (‘he is good’, ‘he is ex-

cellent’, and so on for other grades). Requiring proposition-wise independence

would be utterly implausible.

So far, JA theory faces an all-or-nothing dilemma. Either it accepts proposition-

wise independence, which eliminates many plausible aggregation rules and leads into

impossibility results. Or it drops the axiom and is left with too many possibilities and

no systematic way to prevent irrelevant information from playing a role. In response,

I enrich the JA framework by a ‘relevance’ relation R between propositions, where

R represents relevance of  to (the collective judgment on) . I replace proposition-
wise independence by independence of irrelevant propositions (‘IIP’): the collective

judgment on a proposition depends solely on people’s judgments on propositions

relevant to it. There are many interpretations and applications. In the ‘classical’

case, each proposition is deemed relevant just to itself: R ⇔  = . So IIP

reduces to proposition-wise independence. For less narrow relevance notions, IIP

becomes weaker and more plausible. For instance, relevance of  to  could mean

that  is a premise/argument/reason for or against , as is the case in (a). Such a

relevance relation is acyclic. The corresponding axiom IIP represents the condition

of premise-based aggregation. Alternatively, relevance of  to  could mean that 

and  pertain to the same semantic field, topic or matter. Such a relevance relation

is an equivalence relation. An example is the relevance relation indicated in (b) for

the preference agenda: it reflects Arrow’s notion of (ir)relevance and renders IIP

equivalent to Arrow’s axiom of ‘independence of irrelevant alternatives’. Another

example is the relevance relation indicated in (c) for the evaluation agenda: here, IIP

requires matter-wise independent aggregation, for instance by taking people’s average

or median position on each matter.

Overview of the findings in the context of the literature. After defining the

judgment aggregation framework (in the version of List and Pettit [30] and more

2A collective acceptance of  can never be reversed if everyone who strictly prefers  to  (i.e.,

accepts  but not ) suddenly becomes indifferent (i.e., accepts both  and ). This is

counterintuitive.

3



precisely Dietrich [7], [8]) and adding the relevance notion (Sections 2 and 3), I

explore relevance-based aggregation from a constructive perspective (Section 4) and

then an axiomatic perspective (Sections 5-9). In Section 4, the relevance relation is

taken to capture premisehood (priority) and to define an (acyclic) ‘priority graph’

over the propositions. This leads to priority rules: aggregation rules which decide

on the propositions in an order of priority imposed by the priority graph, where

each decision is constrained by the prior decisions. Such rules generalize List’s [28]

sequential priority rules, which are based on a linear priority order rather than a

general priority graph. Theorem 1 gives sufficient conditions for priority rules to be

‘well-behaved’, i.e., to respect our new independence axiom and generate consistent

collective judgments.

Later, Sections 5-9 focus on impossibility theorems in an Arrovian tradition. I

first introduce a unanimity condition — unambiguous agreement preservation — which

focuses on ‘non-spurious’ agreements, in which people agree not just on a judgment,

but also on the ‘reasons’. The axiom turns out to generalize Arrow’s weak Pareto prin-

ciple. I prove four impossibility theorems that give sufficient conditions under which

our new independence and unanimity axioms imply that aggregation is degenerate.

The theorems differ in the notion of ‘degenerate’. One theorem generalizes Arrow’s

Theorem in its general version and its indifference-free version, since Arrow’s The-

orem arises when choosing the preference agenda (in its general or indifference-free

version). Our theorem also generalizes the known Arrow-like theorem in judgment

aggregation (see Dietrich and List [10] and Dokow and Holzman [15], both building

on Nehring and Puppe [37]/[39] and strengthening Wilson [43]). The latter theorem

arises when choosing the (narrow) classical relevance notion. This known theorem al-

ready generalizes Arrow’s Theorem in its indifference-free version. Arrow’s Theorem

in its general version had so far no judgment-aggregation counterpart. It was however

derived from a judgment-aggregation theorem (see Dokow and Holzman [17], Corol-

lary 4.4). Ever since Nehring and Puppe [37]/[39] an important goal in the theory

has been that theorems be tight, i.e., maximally general in their assumptions on the

aggregation problem. In particular, the mentioned Arrow-like theorem is tight (see

Dokow and Holzman [15]). Our theorems are all tight in the special case of the clas-

sical relevance relation (where our new independence axiom reduces to the classical

one). But they are not tight in general.

In sum, weakening classical independence opens up new possibilities (such as

priority rules), but does not generally free us from impossibility. It is of course well-

known that classical independence is very hard to satisfy: besides the cited Arrow-like

impossibility theorem, see for instance the impossibility theorems in List and Pettit

[30], Pauly and van Hees [40], Dietrich [5], Gärdenfors [23], Mongin [33], Nehring

and Puppe [37]/[39], [38], Dietrich and List [9], [11], [13], Dokow and Holzman [17],

Nehring [35] and Dietrich and Mongin [14]. The classical independence axiom is often

criticised (e.g., Chapman [3], Mongin [33]), but rarely weakened. All weaker indepen-

dence axioms in the literature — such as independence axioms restricted to premise

propositions (Dietrich [5], Dietrich and Mongin [14]) or to atomic propositions (Mon-

gin [33]) — are special cases of our independence axiom: they arise for special choices of

the relevance relation. It is also worth mentioning Dokow and Holzman’s [16] impos-

sibility theorem on matter-wise independent aggregation of non-binary evaluations.

Although matter-wise independence is a special case of our independence axiom, their
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impossibility theorem is not generalized by our ones (partly because the unanimity

axioms do not match). A growing branch of the judgment aggregation literature gives

up proposition-wise independence altogether rather than weakening it. This includes

the distance-based approach (e.g., Konieczny and Pino-Perez [25], Pigozzi [41], Miller

and Osherson [31], Hartmann et al. [24], Lang et al. [27]), the sequential approach

(e.g., List [28], Dietrich and List [9]), Borda-like and scoring-based rules (Zwicker [44],

Dietrich [8], Duddy, Piggins and Zwicker [19]), and ‘approximately majoritarian’ rules

(Nehring, Pivato and Puppe [36]).

2 The judgment aggregation framework

A group of  ≥ 2 individuals, labelled 1  , has to form collective judgments on

some interconnected propositions.

The agenda. The set of propositions under consideration is the agenda. It is subdi-

vided into issues, i.e., pairs of opposite proposition, such as ‘it will rain’ and ‘it won’t

rain’. Writing ‘¬’ for negation, the agenda thus takes the form = {¬ 0¬0 },
with issues {¬}, {0¬0}, ... An individual rationally accepts one proposition from
each issue (‘completeness’) and respects any logical interconnections (‘consistency’).

Formally:

Definition 1 An agenda is a non-empty set  (of ‘propositions’) that is endowed

with the notions of negation and interconnections, i.e.,

(a) to each  ∈  corresponds a proposition denoted ¬ ∈  (‘not ’) with ¬ 6=
 = ¬¬ (so  is partitioned into pairs {¬}, called ‘issues’),

(b) certain judgment sets  ⊆  containing a single member of each issue count as

‘rational’ (the set of these  is denoted J 6= ∅),
where (in this paper)  is tautology-free, i.e., no  ∈  belongs to all  ∈ J .3

Given an agenda , we fix a subset 0 ⊆  containing exactly one member of

each pair ¬ (no matter which one). So  = {¬ :  ∈ 0}. I often write
‘±’ for ‘¬’, and use the term ‘issue’ for both ± and {±}. In examples, the
agenda is often specified syntactically, writing propositions as logical sentences and

using the logical notions of negation and interconnections. Simple (syntactic) agendas

are  = {±±±( ∧ )} and  = {±±±±( ↔ ( ∧ )}, where    are
(logically independent) atomic propositions such as, in a jury decision problem, ‘the

defendant has broken the contract’, ‘the contract is legally valid’ and ‘the defendant

is liable’.4

3 In algebraic terms, the agenda is the structure  ≡ (¬J ). The negation operator ¬ (a

function  7→ ¬ satisfying ¬ 6=  = ¬¬) and the set of issues (a partition of  into binary sets)

are two interdefinable objects. We could thus equivalently define an agenda as a set endowed with

‘issues and interconnections’, and define the negation of  as the unique proposition ¬ such that
{¬} is an issue. Algebraically,  would then be the structure  ≡ (IJ ) where I is the set
of issues.

4Following Dietrich [7], the logic in which propositions are expressed could take many forms:

classical or non-classical (e.g., a modal logic), propositional or non-propositional (i.e., a predicate

logic).
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Individual judgments. The judgment set of an individual is the set  ⊆ 

of ‘accepted’ or ‘believed’ propositions. It is complete if it contains a member of

each issue {¬}, and consistent if it is a subset of a rational judgment set. So a
judgment set is rational (i.e., in J ) just in case it is both consistent and complete. A
proposition  ∈  (or set  ⊆ ) entails a proposition  ∈  — written  `  (resp.

 ` ) — in case, for every rational judgment set  ∈ J , if  ∈  (resp.  ⊆ ), then

 ∈ J .

Aggregation. An aggregation rule is a function  that assigns to every profile

(1     ) of ‘individual’ judgment sets (from some domain of admissible profiles)

a ‘collective’ judgment set  (1     ) ⊆ . An example is majority rule, given by

 (1  ) = { ∈  : |{ :  ∈ }|  2} for all (1  ) ∈ J .

In this paper, the domain of the aggregation rule is always J , i.e., any rational

input is admissible. If outputs are also rational,  is a function  : J  → J . More
generally,  is a function  : J  → 2 with possibly inconsistent or incomplete

outputs. Majority rule notoriously generates inconsistent outputs.

I now give two important examples; other ones will follow in the next section.

Example 1: aggregating strict or general preferences. I now define the pref-

erence agenda in two versions: for strict preferences (excluding indifferences) and

general preferences (allowing indifferences). Consider a set of two or more alterna-

tives .

• The strict preference agenda for the set of alternatives  is the set of sen-

tences  = { :   ∈   6= }, where  reads ‘ is (strictly) better
than ’ and where by definition ¬ = . The interconnections are defined

by the usual conditions on strict preferences. Formally, judgment sets  ⊆ 

can be identified with (irreflexive) binary relation Â on  via the equivalence

 Â  ⇔  ∈  for  6= ; and so we may apply relation-theoretic notions like

transitivity to judgment sets. J is the set of all transitive, anti-symmetric and

connected judgment sets  ⊆ . So rational judgment sets  ∈ J represent

strict linear orders on .

• The general (or weak) preference agenda for the set of alternatives  is

the set of sentences  = {¬ :   ∈   6= }, where  reads ‘ is
weakly better than ’. This agenda has twice the size of the strict preference

agenda, as ¬ 6= , whereas for the strict preference agenda ¬ = .

While ¬ cannot be replaced by , I will sometimes write ‘’ for ¬
(reflecting the equivalence between preferring  to  and not weakly preferring

 to ). The interconnections within the general preference agenda are defined

by the usual rationality conditions on weak preferences. Formally, we can apply

relation-theoretic notions like transitivity to judgment sets  ⊆ , as each

 ⊆  induces a (reflexive) binary relation % on  via  %  ⇔  ∈  for

 6= . Now J is the set of all judgment sets (containing exactly one member of

each issue ¬) which are transitive and connected. So rational judgment
sets represent weak orders on .
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Example 2: aggregating evaluations. Consider the aggregation of people’s (pos-

sibly non-binary) positions on some matters or issues (e.g., Rubinstein and Fishburn

[42], Dietrich and List [12], Dokow and Holzman [16]). As will be seen, this non-

binary aggregation problem can be represented in the binary judgment aggregation

framework. Given sets  of ‘matters’ and  of possible ‘positions’ or ‘values’ (where

|| ≥ 1 and | | ≥ 2), an evaluation is a function  :  →  assigning a position

to each matter, or equivalently a family ()∈ in   . (One might write  and 

as  = {1 } and  = {0 1  } in the finite case.) For instance,  contains

political candidates and  possible grades of candidates; or  contains macroeco-

nomic variables (GDP, inflation, etc.) and  ⊆ R; or  contains animal species and

 possible sizes of species; or  contains sentences and  truth values in binary or

many-valued logic. Not every evaluation counts as coherent, because of interconnec-

tions between matters: macroeconomic variables must obey certain equations, animal

species cannot all be extinct, etc. Let E ⊆   be the non-empty set of ‘coherent ’

evaluations. To study the aggregation of coherent evaluations as a (binary) judgment

aggregation problem, consider the agenda

 = {± :  ∈   ∈  } (the evaluation agenda)

where  denotes the proposition ‘ is the value on matter ’.
5 To each evaluation

 :  →  corresponds a unique judgment set  ⊆ , containing those  with

() =  and those ¬ with () 6= . A judgment set is rational just in case it

corresponds to a coherent evaluation: J = { :  ∈ E}.6
Evaluation aggregation has so far not been addressed within (binary) judgment

aggregation theory. But it has been analysed in other frameworks, and for many

kinds of evaluation.7

3 Relevance and a new independence axiom

I aim to overcome the following controversial independence axiom, which parallels

Arrow’s ‘independence of irrelevant alternatives’ and has led to many impossibility

results.

Proposition-wise Independence: For all propositions  ∈  and all profiles

(1  ) and (
0
1  

0
) in the domain, if  ∈  ⇔  ∈  0 for every individual

 then  ∈  (1  )⇔  ∈  ( 01  
0
).

5For simplicity I use the symbol ‘’ both for a proposition  ∈  and a position  = () ∈  .
6 In a generalized version of Example 2, the set of possible positions is matter-dependent, so that

 is replaced by sets  ( ∈ ). One matter might consist in estimating a real-valued quantity

( = ), another in answering a yes/no question ( = {yes, no}), and so on.
7For instance, the literature on probabilistic opinion pooling deals with aggregating probability

functions, i.e., evaluations in which ‘matters’ are events and ‘positions’ are subjective probabilities

(e.g., Genest and Zidek [22]). Other contributions on (non-binary) evaluation aggregation are made

by Rubinstein and Fishburn [42] (who prove a general result on linear aggregation), Claussen and

Roisland [4] (who study a non-binary version of the discursive dilemma), Dietrich and List [12]

(who seek to unify different aggregation problems), Dokow and Holzman [16] (who prove a general

impossibility result), and Pauly and van Hees [40] and Duddy and Piggins [18] (who all study the

aggregation of multi-valued logical judgments).
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This axiom forbids that the collective judgment on  depends on people’s judg-

ments on other propositions. However, often some other propositions are relevant to

, so that people’s judgments on them should not be ignored. In our court example,

the breach-of-contract proposition and the validity-of-contract proposition both seem

relevant to the guilt proposition. Other examples follow shortly. There are many

possible interpretations of ‘relevance’ of  to : it could for instance mean that  is

semantically related to , or that  is a premise of . I capture relevance connections

by a binary relation R on the agenda , where R reads ‘ is relevant to ’. The

set of propositions relevant to  ∈  is denoted

R() := { ∈  : R}
Often relevance does not distinguish between a proposition and its negation, i.e., is

negation-invariant: R⇔ 0R0 if 0 ∈ {±} and 0 ∈ {±} (1)

Then R is equivalent to a relation on the set of issues (rather than propositions), or

on the set 0. The informal talk will reflect this. Under negation-invariance, I often

write R(±) to denote both R() and R(¬) (and to imply that R() = R(¬)).
The new independence axiom requires collective judgments to depend only on

people’s judgments on relevant propositions:

Independence of Irrelevant Propositions (IIP): For all propositions  ∈  and

all profiles (1  ) and (
0
1  

0
) in the domain, if ∩R() =  0∩R() for every

individual  then  ∈  (1  )⇔  ∈  ( 01  
0
).

Proposition-wise independence is a special case of IIP with ‘classical’ relevance

given by R() = {}. As another example, consider premise-based aggregation for
the agenda  = {±±±(∧ )} with premise propositions ±± and conclusion
propositions ±(∧). The decisions on ± and ± are made by two separate majority
votes, and the decision on ±(∧ ) is deduced logically from the decisions on ± and
±. This rule satisfies IIP if premises are deemed relevant to conclusions, i.e., if

R(±) = {±}, R(±) = {±}, R(±( ∧ )) = {±±}. (2)

In full generality, a relevance relation R need not satisfy any particular relation-

theoretic conditions such as transitivity or reflexivity. However I shall assume non-

underdetermination: every proposition is settled by the judgments on the relevant

propositions, i.e., for every  ∈  and every consistent set  of the form {∗ :  ∈
R()}, where each ∗ is  or ¬,
• either  entails  ( is then called an (R-)explanation of )
• or  entails ¬ ( is then called an (R-)refutation of ).

This condition is plausible. It holds automatically if R is reflexive (‘self-relevance’).

It also holds for the agenda {±±±(∧)} with relevance given by (2). Here, each
premise proposition  ∈ {±±} has a single explanation {} (and a single refutation
{¬}), ∧ has a single explanation { }, and ¬(∧) has three explanations {¬},
{¬ } and {¬¬}.8 Let me summarize our definitions:

8 In the paper’s unpublished version Dietrich [6], I argue that cases of underdetermination usually

stem from having misspecified R; and I show that non-underdetermination is indispensable since

otherwise no aggregation rule  on J  can satisfy IIP and a mild unanimity condition (requiring

 (  ) =  for all  ∈ J ).
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Definition 2 A relevance relation is a binary relation R on the agenda  sat-

isfying non-underdetermination (I write R() := { : R}). If it is negation-

invariant, then it is identified with a relation on 0 or on the set of issues (and

I write R(±) := R() = R(¬)).
Definition 3 The classical relevance relation is the one given by R ⇔  = ,

i.e., by R() = {}.
Remark 1: IIP is at most as strong as proposition-wise independence (check this

using non-underdetermination), and equivalent to it under classical relevance.

Many informational constraints in social choice theory are instances of IIP relative

to ‘some’ relevance relation. Roughly, the more relevance connections there are, the

weaker IIP becomes. IIP is vacuous if everything is relevant to everything, i.e., if

R =  × . IIP is proposition-wise independence for classical relevance. IIP is

Gärdenfors’ [23] ‘weak ’ proposition-wise independence if R() = {±} for all  ∈ .

IIP is Dietrich’s [5] independence on premises — the restriction of proposition-wise

independence to a subset  ⊆  of ‘premises’ — if R() = {} for  ∈  and

R() =  for  ∈ \ . IIP is Mongin’s [33] independence on atomic propositions if
R() = {} for syntactically atomic propositions  and R() =  for syntactically

compound propositions  (like  ∧ ).
I now give further examples of (negation-invariant) relevance relations.

Example 1 continued. Arrow’s condition of independence of irrelevant alternatives

(‘IIA’) is equivalent to IIP, where we adopt the ‘Arrovian’ relevance relation, which

is implicit in IIA and is defined as follows, depending on whether indifferences are

allowed:

• In the case of the strict preference agenda, Arrovian relevance is defined by
R(±) = {±} for all  ∈  (3)

• In the case of the general preference agenda, Arrovian relevance is defined by
R(±) = {±±} for all  ∈  (4)

The asymmetry between (3) and (4) is only apparent, since in (3) we have {±} =
{±±} (because ¬ =  and ¬ = ). In (4) it matters that

R(±) contains not just ±, but also ±, since an individual’s judgments on
both of these issues are needed to capture how he ranks  relative to , i.e., whether

he prefers , prefers , or is indifferent.

Example 2 continued. For the evaluation agenda  = {± :  ∈   ∈  },
where  represents position  on matter , one might view  as relevant to each

proposition 0 concerning the same matter , but irrelevant to any proposition 00
concerning another matter 0 6= . Formally:

R(±) = {±0 : 0 ∈  } (5)

Example 3: relevance as an equivalence relation (of sameness in topic). In

many cases including Examples 1 and 2, relevance is an equivalence relation: R is
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reflexive (‘self-relevance’), symmetric, and transitive. So the agenda  is partitioned

into equivalence classes of inter-relevant propositions. Interpreting each equivalence

class as a topic, IIP requires topic-wise (not proposition-wise) aggregation. One topic

might deal with weather, another with the economy, and so on. A topic can be

as small as a single issue {±} or much larger. The general preference agenda in
Example 1 has topics of the form {±±} (the topic of comparing  and ).

In Example 2, topics correspond to matters in .

Example 4: relevance as an acyclic relation (of priority/premisehood). I

now interpret ‘R’ as ‘ is a premise/reason/argument for (or against) ’. To make
sense of this interpretation, I exclude priority cycles. Formally, R is a negation-

invariant relevance relation without cycles of issues; it is referred to as a ‘priority

graph’ (see Definition 4). IIP then represents the condition of premise-based aggre-

gation: the collective judgment on any proposition  ∈  is determined by people’s

reasons for or against . This generalizes classical premise-based aggregation, which

a b

ab

(ab) c

c

a b

ab a ¬c

. . . .

.
.
.

.
a ba

b

..

Figure 1: Priority graphs on four agendas. Arrows indicate relevance (priority).

Agenda 1: 0 = {   ∧ }. Agenda 2: 0 = {  →  }. Agenda 3: 0 =

{    ∧  ( ∧ )→  → ¬}. Agenda 4: 0 contains 10 propositions indicated
by "·".

has only two levels of priority, ‘premises’ and ‘conclusions’, as in the first and second

agenda of Figure 1. By allowing an arbitrary priority structure, I permit ‘premises

of premises’ and many other interesting constellations. A premise-based — that is,

IIP — aggregation rule can be thought of as being a sequential procedure, which first

decides on the roots of the priority graph (the ‘basic premises’), and then works itself

forward along each branch of the graph. Let me be more concrete. I call  ∈  a root

proposition and ± a root issue if  has no external premise, i.e., R(±) = {±}.
For instance,  and  are root propositions in the first priority graph of Figure 1. By

IIP, root issues ± are settled by a vote on the issue, ignoring other issues. In this
sense, root issues must be decided first. Decisions on non-root issues ± must come
later because — to ensure collective rationality — they must respect the decisions on

root issues and other prior issues. If the prior decisions impose no logical constraint

on the current issue ± — for instance, if for the second agenda in Figure 1 the deci-
sions on the two root issues are ¬ and → , which have no logical implication for

the issue ± — then there is some freedom in how to settle the current issue. All the

premise-based approach (i.e., IIP) requires here is that the current issue ± be de-
cided based on people’s judgments on the premises R(±). This can be done in many

10



ways. One route is to base the decision on ± on people’s judgments on ± (and
thereby indirectly on their judgments on R(±)9), for instance by taking a majority
vote on ±. This route is taken by ‘priority rules’, studied in the next section.

4 Priority rules relative to a priority graph

This section follows Example 4’s interpretation of relevance as priority/premisehood,

so that IIP requires premise-based aggregation. I again assume that relevance defines

a ‘priority graph’. This notion is now defined formally:

Definition 4 A priority graph is a negation-invariant relevance relation R which

is acyclic as a relation over issues, i.e., there are no 1   ∈  ( ≥ 2) from
distinct issues such that 1R2R· · · R1. Given a priority graph, the axiom IIP is

also called (generalized) premise-basedness.

I now introduce priority rules relative to a priority graph, where  is finite for

simplicity.10 They generalize List’s [28] sequential priority rules, which are defined

relative to a linear order of issues — a ‘linear priority graph’ — and decide the issues

one by one in order of diminishing priority: the decision on any issue is either deduced

from past decisions or made by voting on the current issue, depending on whether

past decisions logically constrain the current decision. Linear priority graphs are of

course a very special case. In applications, priority is often non-linear. For instance,

two issues can be on a par, so that neither has priority over the other (as for the two

‘premise issues’ ± and ± in our example agenda {±±±( ∧ )}).
A priority rule relative to an arbitrary priority graph begins by a vote on every

root issue (of maximal priority). Next, one considers each issue of second-highest

priority, to which only root issues (and possibly the present issue) are relevant: if

the past decisions on relevant root issues imply some decision on the current issue,

then this decision is adopted mechanically; otherwise a local vote is taken on the

present issue, neglecting other issues. And so on for other issues. When taking a

local vote on an issue ±, the group uses a local decision method for , i.e., an

aggregation rule for the one-issue agenda {±} given by a function  : J 0 → J 0
where J 0 = {{} {¬}}.  could for instance be majority voting. In sum, the group

judgment set  ⊆  is constructed step-by-step by forming group judgment sets ()

for the various one-issue agendas {±} ⊆ , and then taking their union. To state

the definition formally, recall that 0 ⊆  contains one proposition from each issue.

Definition 5 A priority rule (relative to a priority graph R on a finite agenda )

is an aggregation rule  = ()∈0
on J  which is given by some local decision

methods ()∈0
(one per proposition in 0, i.e., per issue) as follows. Fix a profile

(1  ) ∈ J . Form ‘local judgment sets’ () ⊆ {±},  ∈ 0, by a recursive

procedure: for each  ∈ 0, after having formed the local judgment sets () for the

propositions  ∈ 0 prior to  (i.e., in R()\{}), take the set of all prior judgments
9The reason is that these judgments are determined by those on R(±) by non-

underdetermination.
10See the paper’s unpublished version Dietrich [6] for the infinite case.
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() := ∪∈0:∈R()\{}() and put

() :=

½ {̃ ∈ {±} : () entails ̃} if () entails a ̃ ∈ {±}
(1 ∩ {±}   ∩ {±}) if () entails no ̃ ∈ {±}. (6)

The full judgment set is the union  (1  ) := ∪∈0
().11

How are the sets () constructed in practice? The (initial) decision on each root

proposition  ∈ 0 is always made by voting on ±, as () = ∅. Later decisions on
non-root propositions  ∈ 0 are made either by entailment from the past judgments

() or by a vote on ±, depending on whether () settles . The local rules 

may all be the same rule, e.g., majority voting. Alternatively,  could depend on

who has expertise on the present proposition  (physicists might have expertise on

physical propositions), or on who is personally affected by the decision on  (citizens

of Brighton are affected by decisions on urban planning for Brighton).12

When are priority rules well-behaved, i.e., satisfy IIP and generate logically con-

sistent outputs? The following theorem gives sufficient conditions. Let me motivate

them first.

• Do priority rules satisfy IIP? This question is related to whetherR is transitive.
To see why, note that if R and R, then people’s judgments on  could affect
the group decision on  (via the group decisions on  and ), assuming these

three propositions are logically interconnected. By Theorem 1, transitivity of

R is sufficient for IIP. (This is true even in the absence of reflexivity, although

one might at first think that violations of IIP can occur when deciding on a

self-irrelevant proposition using a local vote.)

• Do priority rules generate consistent decisions? This depends on two factors.

First, transitivity of R once again matters. To get an intuition, note that if

R and R but not R, then, after the group has decided on  and , it

decides on  by respecting the decision on  (as  ∈ R()), but without giving
any attention to the decision on  (as  6∈ R()) — which threatens collective
consistency. Second, collective consistency is also threatened by logical con-

nections between different (mutually irrelevant) branches of the priority graph,

intuitively because the decisions in one branch ignore those in other branches

(by mutual irrelevance), even if there are logical connections. Theorem 1 shows

that collective consistency is guaranteed if R is transitive and certain kinds of

logical connections are excluded.

Before stating the theorem, recall that negation-closed sets 1   ⊆  are logically

independent if any consistent subsets 1 ⊆ 1   ⊆  have a consistent union.

11The sets () are recursively well-defined, as the priority graph is an acyclic and finite, and

thus well-founded relation on issues (see the well-founded recursion theorem, e.g., Fenstad [20]).

The construction of  (1  ) in Definition 5 can be restated without introducing the sets ():

 (1  ) is the unique set  ⊆  such that for all  ∈ 0

 ∩ {±} =
 {̃ ∈ {±} :  ∩R()\{±} entails ̃} if this set is non-empty

(1 ∩ {±}   ∩ {±}) otherwise.

12 might be majority voting among a particular subgroup of experts on , as in a distributed

premise-based procedure (see List [29]).
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This condition fails trivially if two of the sets  overlap, as one can then pick con-

sistent subsets whose union contains a pair ¬. To exclude such trivial cases, I call
1   logically quasi-independent if any consistent subsets 1 ⊆ 1   ⊆ 
have a consistent union as long as this union contains no pair ¬ (equivalently, if
any set  ⊆ 1∪ · · ·∪ is consistent whenever each restriction  ∩ is consistent).

Theorem 1 All priority rules (relative to a priority graph R on a finite agenda )

(a) satisfy IIP (i.e., are premise-based rules) if R is transitive;

(b) generate rational outcomes if R is transitive and for all pairwise irrelevant

propositions 1   ∈  the setsR(1) R() are logically quasi-independent.

It is worth considering Theorem 1 for two special priority graphs:

• If the priority graph defines a linear order over issues, Theorem 1’s conditions (of
transitivity and logical quasi-independence) hold trivially. So Theorem 1 implies

that List’s [28] sequential priority rules satisfy IIP and (as is known) generate

rational outcomes. To see why the logical quasi-independence condition holds,

note that linearity implies that for any 1   ∈  we may assume without

loss of generality that 1R2R· · ·R, so that R(1) ⊆ R(2) ⊆ · · · ⊆ R().
• Now assume the (degenerate) priority graph in which each issue is only relevant
to itself (R(±) = {±}). Then Theorem 1’s transitivity assumption holds

trivially, and the logical quasi-independence condition reduces to the condition

that all issues in  are mutually independent, i.e., that there are no logical

interconnections whatsoever between issues. For this priority graph, Theorem

1 is tight, i.e., minimal in its assumptions, as an anonymous referee kindly

pointed out.13 But tightness fails for some other priority graphs. For instance,

in the absence of any logical interconnections between issues, transitivity is not

needed in (b), since rationality of outcomes is guaranteed.

Finally, Theorem 1’s logical quasi-independence condition reduces to a logical

independence condition under a simple structural condition on the priority graph:

no proposition is relevant to two mutually irrelevant propositions (so that the sets

R(1) R() in Theorem 1 must be pairwise disjoint). This condition holds for

the first three graphs of Figure 1.

5 A new unanimity axiom restricted to unambiguous

agreements

We now turn to the axiomatic analysis of relevance-based aggregation. IIP cannot

be our only axiom: it fails to exclude constant rules, which totally neglect people’s

judgments. The usual strategy is to impose a unanimity condition, typically by

requiring preservation of all unanimous judgments:

Unanimity Principle: For every profile (1  ) in the domain and every propo-

sition  ∈ , if  ∈  for all individuals  then  ∈  (1  ).

13To see why the absence of logical interconnections is necessary for part (b)’s consistency conclu-

sion, note that only the second case in (6) ever applies as () is always empty.
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This axiom is not very natural under the relevance-based approach: why should

people’s judgments on the propositions relevant to  suddenly not matter? Even if

everyone agrees on , there can be much disagreement on relevant propositions. Such

‘spurious agreements’ — agreements with disagreements on the ‘reasons’ — are often

believed to lack normative force (e.g., Mongin [32], Nehring [35], Bradley [2]). Note

however that spurious agreements are impossible on those propositions which can be

justified (explained) in only one way. I call such propositions ‘unambiguous’:

Definition 6 Given the relevance relationR, a proposition in  is (R-)unambiguous
if it has only one explanation, and (R-)ambiguous otherwise. The set of unambigu-
ous propositions is denoted R.

In our example agenda  = {±±±( ∧ )} with relevance given by (2),
R = \{¬( ∧ )}. Proposition ¬( ∧ ) is ambiguous as it has three explanations:
{¬ } {¬} and {¬¬}. So an agreement on ¬(∧) can be spurious. The new
unanimity axiom is restricted to unambiguous propositions, hence, to non-spurious

agreements:

Unambiguous Agreement Preservation (UAP): For every profile (1  ) in

the domain and every unambiguous proposition  ∈ R, if  ∈  for all individuals

 then  ∈  (1  ).
14

Remark 2: UAP is equivalent to the classical (global) unanimity principle under

classical relevance, as R = . In sum, both of our axioms — IIP and UAP — reduce

to their classical counterparts under classical relevance.

Example 1 continued. For the preference agenda in its strict or general version

(with Arrovian relevance), UAP is equivalent to the weak Pareto principle, which

requires preserving unanimous strict betterness judgments. This is because the un-

ambiguous propositions are precisely the propositions expressing strict betterness

comparisons:

• For the strict preference agenda, all propositions in  express strict betterness

comparisons, and indeed R =  since each proposition  ∈  has a single

explanation, {}.
• For the general preference agenda, only the propositions in of the form  :=

¬ express strict betterness comparisons, and indeed

R = {¬ :   ∈   6= } = { :   ∈   6= } (7)

since each ¬ ∈  has a single explanation, {¬ }, while each  ∈
 has two explanations, { } and {¬}.

Example 2 continued. Consider the evaluation agenda  = {± :  ∈   ∈  }
with the ‘matter-wise’ relevance relation (5). Each  ∈  has only one explanation

({}∪ {¬0 : 0 ∈  \{}}) and each ¬ ∈  has | |− 1 explanations (of the form
14 In a generalization of UAP,  ranges not over R but over a given subset P ⊆ R of ‘privileged’

propositions. All following theorems survive this generalization: see the paper’s unpublished version

Dietrich [6].
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{} ∪ {¬0 : 0 ∈  \{}} with  ∈  \{}). So, as long as | |  2, the set of

unambiguous propositions is

R = { :  ∈   ∈  } (8)

Here UAP is far more plausible than the (global) unanimity principle: requiring to

preserve a unanimously endorsed proposition ¬ ∈ \R strikes as implausible,

because the position  could be a good compromise although no-one holds it.

6 Three impossibility theorems and Arrow’s Theorem in

both versions as special cases

Are there appealing aggregation rules satisfying our two axioms, IIP and UAP? Gen-

eral answers to this question are harder to give than for classical axioms, because

we have to address not just logical links, but also relevance links. Indeed, the inter-

play between both kinds of links matters. Theorem 1 above is a possibility result:

it gives sufficient conditions for the existence of well-behaved (priority) rules. I now

turn to impossibility results, which give sufficient conditions for the inexistence of any

non-degenerate rules  : J  → J satisfying both axioms.

First, what is a ‘degenerate’ aggregation rule? I shall draw on various familiar

versions of dictatorship. In preference aggregation theory, (i) a ‘strong dictator’ can

impose his entire preference relation, (ii) a ‘(weak) dictator’ can impose his strict

preferences (not his weak preferences which can be indifferences), and (iii) a ‘veto-

dictator’ can prevent (‘veto’) any strict preference. All of this can be rephrased in

relevance-based terminology, drawing on the fact that strict preferences are expressed

by unambiguous propositions in the preference agenda (see Example 1). Indeed, for

the preference agenda: (i) a strong dictator can impose his entire judgment set, (ii)

a (weak) dictator can impose any unambiguous proposition, and (iii) a vetodictator

can prevent any unambiguous proposition. I now generalize these three classical no-

tions (and two other ones, namely semi-dictatorship and semi-vetodictatorship) to

arbitrary judgment aggregation problems (agendas):

Definition 7 Under an aggregation rule  : J  → J , an individual  is
• a strong dictator if  (1  ) =  for all (1  ) ∈ J ;

• a dictator (respectively, semi-dictator) if, for every unambiguous proposition
 ∈ R, we have  ∈  (1  ) for all (1  ) ∈ J  such that  ∈ 
(respectively, such that  ∈  and  6∈ ,  6= );

• a vetodictator (respectively, semi-vetodictator) if, for every unambiguous
proposition  ∈ R,  has a veto (respectively, semi-veto) on , i.e., a judgment

set  ∈ J not containing  such that  6∈  (1  ) for all  ∈ J ,  6= 

(respectively, for all  ∈ J ,  6= , containing ).

 is called strongly dictatorial (respectively (semi-)dictatorial, (semi-)vetodictatorial)

if some individual is a strong dictator (respectively (semi-)dictator, (semi-)vetodictator).

Remark 3: Under classical relevance, dictatorship and strong dictatorship are equiv-

alent (as R = ).
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Note that the difference between (veto)dictatorship and semi-(veto)dictatorship

only arises if  is not proposition-wise monotonic, i.e., if additional support for a

proposition can reverse a collective acceptance of that proposition.

Standard impossibility theorems on judgment aggregation are usually driven by

conditional entailments between propositions (first used by Nehring and Puppe [37]).

A conditional entailment is an entailment that is conditional on some other proposi-

tions (with a non-triviality condition on the choice of these other propositions):

Definition 8 Proposition  ∈  conditionally entails  ∈  if {} ∪  ` 

for some (possibly empty) set  ⊆  that is consistent with  and with ¬. The
conditional entailment is proper if  6`  i.e.,  is consistent with ¬.

We need a stronger variant of conditional entailment that is sensitive to relevance

links. I call a set  ⊆  strongly consistent with  ∈  if it is consistent with every

(R-)explanation of  (hence also with  itself). Loosely speaking, this means that 

is consistent with any reasons that could underlie .

Definition 9 Proposition  ∈  constrainedly entails  ∈  (written ‘ `R ’)

if {} ∪  `  for some (possibly empty) set  ⊆ R that is strongly consistent with
 and with ¬ (i.e., consistent with all explanations of  and all ones of ¬). In this
case,  constrainedly entails  in virtue of  (written ‘ `R ’).

Remark 4: Constrained entailment implies conditional entailment, and is equivalent

to it under classical relevance (as then each proposition  has the only explanation

{}).

Examples are due. First, every unconditional entailment is a constrained en-

tailment: just take  = ∅. Next, the general preference agenda  of Example

1 (with Arrovian relevance) contains many constrained entailments (and this is in-

deed a source of impossibility). For instance, for pairwise distinct options   ,

we have  `R{} , because { } ` , where  belongs to

R and is consistent with each explanation of  ({ } and {¬})
and with the only explanation of ¬ =  ({}). By contrast, no con-

strained entailments (besides the trivial self-entailments) exist in our example agenda

 = {±±±( ∧ )} with relevance given by (2). For instance, it is neither the
case that  `R{¬(∧)} ¬ (as ¬(∧ ) 6∈ R), nor the case that  `R{} ∧  (as {}
is inconsistent with the explanation {¬} of ¬( ∧ )). As a result, our impossibil-
ity results will not apply to this agenda — and indeed this agenda allows for plenty

of well-behaved (premise-based) aggregation rules. In general, the more relevance

connections there are, the fewer constrained entailments there are.15

Verifying whether  `R  requires checking whether  `R  for any set  ⊆ R.
Fortunately, one can restrict this test to sets  ⊆ R\(R() ∪R(¬)), and as long
as R is negation-invariant even to sets  ⊆ R\(R(±) ∪ R(±)). This is shown
by Lemma 3 below. Loosely speaking, one can thus restrict attention to sets  of

unambiguous and irrelevant propositions.

15Formally, if RR0 are relevance relations on  with corresponding constrained entailment rela-

tions `R`R0 (⊆ 2 ×), then R ⊆ R0 ⇒ `R0 ⊆ `R  Indeed, if R is refined, then R shrinks and

explanations increase in size and number, so that the requirements on  get stronger.
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Recall that a conditional entailment from  to  is ‘proper’ if  is consistent

with ¬ (‘no unconditional entailment’). For a constrained entailment to be ‘proper’,
something subtly stronger than consistency of  with ¬ is required:
Definition 10 A proposition  ∈  properly constrainedly entails another  ∈
 if  `R  and every explanation of  is consistent with every explanation of ¬.
Remark 5: Under classical relevance, proper constrained entailment is equivalent to

proper conditional entailment (as each  ∈  has the only explanation {}).

For the strict or general preference agenda (Example 1), all constrained entail-

ments without unconditional entailment are proper; for instance, the constrained

entailment  `R  is proper because each explanation of  ({ } and
{¬}) is consistent with each explanation of ¬ (= ). There are many

other examples.16

Our impossibility results draw on paths of constrained entailments.

Definition 11 (a) For propositions   ∈ , if  contains propositions 1  
( ≥ 2) with  = 1 `R 2 `R  `R  = , I write  ``R ; if moreover one

of these constrained entailments is proper, I write  ``properR .

(b) A set  ⊆  is pathlinked if  ``R  for all   ∈ , and properly path-

linked if moreover  ``properR  for some (hence all)   ∈ .

Pathlinkedness of a set  leads to a limited form of neutral aggregation within :

the same coalitions are ‘semi-decisive’ (in a technical sense) for each proposition in .

Such a neutrality argument is the first step to establish our impossibility theorems; the

next step consists in proving that only singleton coalitions {} can be ‘semi-decisive’.
Theorem 2 If the set R of unambiguous propositions is properly pathlinked and

inconsistent, every aggregation rule  : J  → J satisfying IIP and UAP is semi-

vetodictatorial.

Theorem 3 If the set {¬ :  ∈ R} of unambiguous or negated unambiguous
propositions is properly pathlinked, every aggregation rule  : J  → J satisfying IIP

and UAP is semi-dictatorial.

In both theorems, there may exist several semi-(veto)dictators, and there need not

exist any (veto)dictator. Like in all our theorems, the assumptions are not generally

tight, but become tight for classical relevance. All this will become clear in Section

8, where I apply the theorems to classical relevance.

To be able to strengthen ‘semi-dictatorial’ to ‘dictatorial’ in Theorem 3, it suffices

to add a small extra condition on the paths in Theorem 3. I call a constrained entail-

ment  `R  ‘irreversible’ if it is not a ‘constrained equivalence’, i.e., if  constrainedly

entails  in virtue of a set  without it being the case that  entails  given  :

16Every (non-unconditional) constrained entailment between root propositions is proper (see Ex-

ample 4), again because a root proposition  has only explanation {}. If relevance is an equivalence
relation (as in Examples 1-3) which moreover partitions  into pairwise logically independent sub-

agendas (‘topics’), then all constrained entailments across equivalence classes are proper. (Two

subagendas 1 2 are logically independent if the union of consistent subsets  ⊆ 1  ⊆ 2 is

consistent.)
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Definition 12 For   ∈ ,  irreversibly constrainedly entails  if  `R 

for a set  for which {} ∪  6` .

In the strict or general preference agenda (Example 1), all constrained entailments

between distinct propositions are irreversible. For instance,  irreversibly entails

 (where    are distinct options), as  `R{}  where { } 6`
. By the next result, the semi-dictatorship of Theorem 3 becomes a dictatorship

if at least one constrained entailment is irreversible.

Definition 13 (a) For propositions   ∈ , I write  ``irrevR  if  contains

propositions 1   ( ≥ 2) with  = 1 `R 2 `R  `R  = , where at

least one of these constrained entailments is irreversible.

(b) A pathlinked set  ⊆  is irreversibly pathlinked if  ``irrevR  for some

(hence all)   ∈ .

Theorem 4 If the set {¬ :  ∈ R} of unambiguous or negated unambiguous
propositions is properly and irreversibly pathlinked, every aggregation rule  : J  →
J satisfying IIP and UAP is dictatorial.

This theorem generalizes Arrow’s Theorem in its general and indifference-free

versions. To see why, note the following fact (shown in the appendix):

Remark 6: The strict or general preference agenda for a set of at least three alter-

natives (with Arrovian relevance) satisfies the assumptions of Theorem 4, i.e., the set

{¬ :  ∈ R} (which equals ) is properly and irreversibly pathlinked.17

By this observation, Theorem 4 has Arrow’s Theorem as a special case:

Corollary 1 (Arrow’s Theorem in both versions) Given the strict or general prefer-

ence agenda for a set of at least three alternatives (with Arrovian relevance), every

aggregation rule  : J  → J satisfying IIP (equivalent to Arrow’s independence of

irrelevant alternatives) and UAP (equivalent to the weak Pareto principle) is dictato-

rial.

I now apply our impossibility theorems to the classical relevance relation (Section

7) and then to a concrete example of evaluation aggregation (Section 8).18

7 The Arrow-like theorem in judgment aggregation as a

special case

I now state the special cases of Theorems 2-4 for classical relevance.19 Here these

theorems become tight, i.e., minimal in their assumptions (as long as the agenda is

17 In the case of the strict preference agenda, the pathlinkedness of  follows directly from the

well-known pathconnectedness of  (Nehring [34], Dietrich and List [10], Dokow and Holzman [15]).
18For brevity, I do not also apply the results to the case where relevance represents prior-

ity/premisehood (Example 4). In this case the sets  and {± :  ∈ } contain all root propositions
of the priority graph (and perhaps other propositions), so that our theorems assume certain paths

between root propositions (and perhaps other propositions). Whether these assumptions hold — i.e.,

whether such paths can be constructed — depends very much on the specific case, i.e., on the interplay

between the priority graph and logical connections.
19 I thank an anonymous referee for asking me to establish this important link.
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finite).

Theorem 4 becomes the known Arrow-like impossibility theorem, i.e., the coun-

terpart for judgment aggregation of Arrow’s Theorem (Dietrich and List [10], Dokow

and Holzman [15], both building on Nehring and Puppe [37] and strengthening Wil-

son [43]). Indeed, the assumptions and axioms of Theorem 4 reduce to those of

the Arrow-like theorem. The Arrow-like theorem assumes, firstly, that the agenda

is pathconnected. Pathconnectedness is defined like pathlinkedness, except that one

uses conditional rather than constrained entailment (it is introduced by Nehring and

Puppe [37] under the label ‘total blockedness’). The Arrow-like theorem assumes,

secondly, that the agenda is pair-negatable. Recall that a set  ⊆  is minimal in-

consistent if it is inconsistent and its proper subsets are consistent. Pair-negatability

means that  has a minimal inconsistent subset  which can be made consistent

by negating some pair of propositions, i.e., ( \{ }) ∪ {¬¬} is consistent for
some pair of distinct propositions   ∈  . For instance, the strict and general pref-

erence agendas are pair-negatable once there are three distinct alternatives   ,

as the subset  = {  } is minimal inconsistent and becomes consis-
tent if we (for instance) replace  and  by  and .20 To be precise,

Theorem 4’s assumption (of proper irreversible pathlinkedness) reduces to pathcon-

nectedness and a slightly generalized version of pair-negatability. Pair-negatability

in this generalized version means that  has an inconsistent subset  such that the

sets ( \{ }) ∪ {¬¬}, ( \{}) ∪ {¬} and ( \{}) ∪ {¬} are each consistent
for some pair of distinct propositions   ∈  . This version implies the standard

one since it does not require  to be minimal inconsistent and since ( \{})∪ {¬}
and ( \{}) ∪ {¬}} are automatically consistent if  is minimal inconsistent. For

finite , both versions are equivalent since a finite inconsistent set has a minimal

inconsistent subset. I henceforth understand ‘pair-negatability’ in the generalized

sense.

The following observation (proved in the appendix) shows that Theorem 4’s as-

sumptions indeed reduce to pathconnectedness and pair-negatability. The observation

in fact boils down to well-known facts, given the equivalence (for classical relevance)

of constrained and conditional entailment (see the citations in the proof).

Remark 7: For classical relevance, the agenda  (= R = {¬ :  ∈ R}) is
• pathlinked if and only if it is pathconnected,
• irreversibly pathlinked if and only if it is pathconnected and pair-negatable;

moreover pathlinkedness of  is equivalent to proper pathlinkedness of .

So, Theorem 4 reduces to the Arrow-like theorem in the case of classical relevance:

Corollary 2 (the Arrow-like theorem in judgment aggregation) If the agenda is path-

connected and pair-negatable, every aggregation rule  : J  → J satisfying proposition-
wise independence and the unanimity principle is dictatorial.21

20Pair-negatability can be defined equivalently in terms of negating an even number (rather than

a pair) of propositions. Another equivalent statement is Dokow and Holzman’s [15] ‘non-affineness’

condition.
21Here and in Corollary 4, ‘dictatorial’ can be read in the weak or strong sense, as both are

equivalent for classical relevance (see Remark 3).
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If  is finite, this result is tight, as it has been proved with an ‘if and only if ’ by

Dokow and Holzman [15].

Now we turn to Theorems 2 and 3. Under classical relevance (for which  =

R = {¬ :  ∈ R}), these two results collapse into a single result, stated in the
next corollary. The reason is that each theorem’s assumption becomes equivalent to

pathconnectedness of  (by Remark 7), and (semi-)dictatorship becomes equivalent

to (semi-)vetodictatorship given proposition-wise independence.

Corollary 3 If the agenda is pathconnected, every aggregation rule  : J  → J sat-

isfying proposition-wise independence and the unanimity principle is semi-dictatorial.22

If  is finite, this result is also derivable by combining two known results, namely

the Arrow-like theorem (Corollary 2) and a theorem by Dokow and Holzman [15].23

Again, the result is tight, i.e., would hold with an ‘if and only if ’, for finite . In

Corollary 3, ‘semi-dictatorial’ cannot be strengthened to ‘dictatorial’ and there can

be multiple semi-dictators (as is clear from footnote 23).

Finally, we can also deduce a seminal theorem by Nehring and Puppe [39], as

an anonymous referee kindly remarked. A rule  : J  → J is monotonic if addi-

tional support for the collectively endorsed judgment set never reverses its collective

endorsement (i.e., for all 1    ∈ J and individuals ,  (1  ) =  ⇒
 (1  −1  +1  ) = ). Since semi-dictatorship implies dictatorship once

we assume monotonicity, Corollary 3 implies the following result:

Corollary 4 If the agenda is pathconnected, every aggregation rule  : J  → J
satisfying proposition-wise independence, monotonicity and the unanimity principle

is dictatorial.

Here again, the assumptions are tight (Nehring and Puppe [39]).

While Corollary 1 (Arrow’s Theorem), Corollary 2 (the Arrow-like theorem in

judgment aggregation) and Corollary 3 are special cases of our results — for particular

agendas and/or relevance relations — Corollary 4 is not a special case, but ‘only’ a con-

sequence of our results. Thus Nehring and Puppe’s theorem has not been generalized,

but re-derived.

8 A concrete illustration

I now reconsider the evaluation agenda of Example 2 and work out a concrete case in

which Theorem 2’s semi-vetodictatorship or even Theorem 4’s dictatorship applies.

22 ‘Semi-dictatorial’ can again be read in the weak or strong sense, as both are equivalent for the

classic relevance relation. The strong sense is defined like the weak sense, except that  ranges over

the entire agenda  not R. Given proposition-wise independence, strong semi-dictatorship by
individual  means that  ∈  (1  ) whenever  ∈  but  6∈  for  6= .
23To see why, let  be pathconnected. If  is also pair-negatable, it is dictatorial by Corollary 2,

hence in particular semi-dictatorial. If  is not also pair-negatable (and  is finite),  must be a

‘parity rule’ (see Dokow and Holzman’s [15] Proposition 4.3), hence in particular a semi-dictatorship.

Under a parity rule, the collective endorses those propositions which are endorsed by an odd number

of individuals from  , where  ⊆  is a fixed subgroup of odd size. If  is not pair-negatable,

parity rules turn out to map into J .
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Suppose a country’s inflation rate  (in R) depends on two economic quantities  and
 (in R). I consider two cases.

Case 1: exogenously given theory of inflation. Assume that it is uncontro-

versially known that inflation obeys the equation ‘ = ( )’ for a given function

 : R2 → R, where the equation is uniquely solvable in  (for any fixed  and ) and

in  (for any fixed  and ). The group needs to estimate ,  and  (matters 1, 2 and

3, respectively), subject to the equation. Formally, the set of matters is  = {1 2 3},
and the set of possible positions on a matter (‘estimates’) is  = R. An evaluation
is a function  :  → R, or equivalently a triple of estimates (  ) ∈ R3. It is
coherent if and only if  = ( ). So the agenda is  = {± :  ∈   ∈ R},
where  is the proposition ‘ is the value of variable ’. To an evaluation  corre-

sponds the judgment set  ⊆  containing those  with () =  and those ¬
with () 6= . Rational judgment sets are judgment sets corresponding to coherent

evaluations. A proposition is relevant to another if and only if it pertains to the

same variable (matter). Formally, R(±) = {±0 : 0 ∈ R}. The unambiguous
propositions are

R = { :  ∈   ∈ R} = {1 2 3 :  ∈ R}

Theorem 2 applies, so that only vetodictatorships obey our conditions on aggregation.

To show this, I prove that R is properly pathlinked and inconsistent. Inconsistency
is obvious, since a variable cannot have many values. Proper pathlinkedness follows

from two observations:

(a) Between any pair  
0
0 ∈ R with  6= 0 there is a proper constrained entail-

ment  `R 00 , i.e., a ‘one-step path’. For instance, for any   ∈ R, 1 `R 3
with  = {2}, where  is chosen such that  = ( ). To see that this is a

well-defined constrained entailment, note that  is consistent with the only ex-

planation of 1, i.e., {1} ∪ {¬1 : 0 6= }, and with each explanation of ¬3,
i.e., each {̄3} ∪ {¬3 : 0 6= ̄} for ̄ 6= . The constrained entailment is proper

because the explanation of 1 is consistent with each explanation of ¬3.
(b) Between any pair  

0
 ∈ R involving the same variable  there is a ‘two-step

path’: choosing any 0 ∈ R with 0 6= , we have  `R 0 `R 0 by (a).

Case 2: controversial theory of inflation. Now assume there are two rival

theories: one claims the equation ‘ = ( )’, the other claims the equation ‘ =

( )’, where   : R2 → R are distinct functions and each equation is again uniquely
solvable in  (for any fixed  ) and in  (for any fixed  ). Consider a refined decision

problem in which the group needs not only to estimate ,  and  (matters 1, 2 and

3), but also to choose one of the two theories (matter 4). This leads to another special

case of Example 2, yet in the generalized version of footnote 6 in which the set of

possible positions on a matter is matter-dependent (‘’ instead of ‘ ’). Formally,

the set of matters (issues) is now  = {1 2 3 4}, and the set of possible positions on
a matter  is  = R if  ∈ {1 23} and  = { } if  = 4. An evaluation  assigns

a position in  to each matter ; equivalently, it is a tuple (   ) ∈ R3 × { }
containing the three estimates and the chosen theory (function). it is coherent if and

only if the estimates respect the chosen theory, i.e.,  = ( ). The agenda is thus

 = {± :  ∈   ∈ }, where proposition  means that  is the value on matter
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. As usual, to an evaluation  corresponds the judgment set  ⊆  containing

those  with () =  and those ¬ with () 6= ; rational judgment sets are

judgment sets corresponding to coherent evaluations. The relevance relation is given

by R(±) = {±0 : 0 ∈ }. The unambiguous propositions are

R = { :  ∈   ∈ } = {1 2 3 :  ∈ R} ∪ {±4±4}

This time Theorem 4 applies, so that dictatorships are the only aggregation rules

satisfying our conditions. I now show this. Note that the closure under negation of

R is the entire agenda . So I need to show that  is properly and irreversibly

pathlinked. First, the set ∗ := { :  ∈ {1 2 3}  ∈ R} is properly pathlinked;
the argument resembles that in Case 1, as ∗ corresponds to the set of unambiguous
propositions in Case 1.24 I now establish pathlinkedness of  by proving that, for all

 ∈ ,

 ``R 4 and 4 ``R  for each  ∈ { } (9)

I distinguish between different cases (in cases (a) and (b) the constructed paths have

only one step, so that ‘``R’ can be replaced by ‘`R’):
(a) Case  ∈ ∗: As ∗ is pathlinked, it suffices to show (9) for some  ∈ ∗.

Firstly, for any 1 ∈ ∗ and  ∈ { } we have 4 `R 1 in virtue of  =

{2 3} with any  ∈ R and  := ( ) (because  is the only solution of the

equation  = ( )). Secondly, as long as  and  have been chosen such that

( ) 6= ( ), we also have 1 `R 4.

(b) Case ¬ ∈ ∗, i.e.,  = ¬ with  ∈ ∗: Consider  =  (the proof is

analogous for  = ). By (a),  `R 4 and 4 `R . So ¬4 `R ¬ and
¬ `R ¬4 using contraposition (see Lemma 1). In other words, 4 `R ¬
and ¬ `R 4 (as desired), because the constrained entailment relation does

not distinguish between 4 and ¬4 (they are logically equivalent).
(c) Case ¬ 6∈ ∗, i.e.,  ∈ {±4±4}: Consider any  ∈ { }. I may assume

without loss of generality that  ∈ {4 4}, as ¬4 is interchangeable with 4,

and ¬4 with 4 (see (b)). Pick any  ∈ ∗. By (a)  ``R  and  ``R 4, so

that  ``R 4; similarly, 4 ``R  and  ``R , so that 4 ``R .

Finally, the pathlinkedness of  is proper and irreversible. It is proper since con-

strained entailments  `R 00 with  6= 0 are proper. It is irreversible because,
for all   ∈ R and all  6= ( ), there is an irreversible constrained entailment

1 `R ¬3 (take  = {2 4}).

9 An impossibility theorem with strong dictatorship

When do our conditions on aggregation even imply strong dictatorship? For the gen-

eral preference agenda, this cannot be the case: it is indeed well-known that Arrow’s

axioms allow for non-strong dictatorships (in the form of ‘lexicographic dictatorships’,

in which a ‘second-order dictator’ acts as tie-breaker wherever the ‘first-order dictator’

is indifferent).

24To adapt the argument, simply add proposition 4 to each set  used in a constrained entailment.

This enforces the equation ‘ = ( )’ which used to be exogenous in Case 1.
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A first observation is that if all propositions are unambiguous, i.e., if R = , as

is for instance true for classical relevance, then a dictatorship is automatically strong,

so that Theorem 4 becomes a strong dictatorship result:

Corollary 5 If  is properly and irreversibly pathlinked and R = , every aggre-

gation rule  : J  → J satisfying IIP and UAP is strongly dictatorial.

The condition R =  can in fact be weakened to the condition that all propo-

sitions in  are disjunctions of unambiguous propositions. We call  ∈  the dis-

junction of the set of propositions  ⊆  if accepting  is (rationally) equivalent

to accepting at least one member of  (i.e., for any rational judgment set  ∈ J ,
 ∈  ⇔  ∩  6= ∅). For instance, the proposition ‘it rains or snows’ is presumably
the disjunction of {‘it rains’, ‘it snows’}.25 Finally, by a disjunction of unambiguous
propositions I of course mean a disjunction of some set  ⊆ R.

Theorem 5 If {¬ :  ∈ R} is properly and irreversibly pathlinked and all am-
biguous propositions are disjunctions of unambiguous propositions, then every aggre-

gation rule  : J  → J satisfying IIP and UAP is strongly dictatorial.

I give two examples where the additional condition holds, and one where it fails:

• The condition holds trivially if R =  (no ambiguous propositions), hence in

particular if relevance is classical. So, for classical relevance Theorem 5 reduces,

just like Theorem 4, to the Arrow-like theorem in judgment aggregation stated

in Corollary 2.

• The condition also holds for the evaluation agenda of Example 4 (and thus for
the illustrations of Section 8). Here, an ambiguous propositions is of type ¬,
saying that  is not the value holding on matter ; this is the disjunction of the

unambiguous propositions of type 0, 
0 6= , saying that some other value 0

holds on matter . In the illustration under Case 2 of Section 8 all premises of

Theorem 5 hold, so that strong dictatorships are the only ‘solutions’.

• The condition fails for the general preference agenda: no ambiguous proposition
(of type ) is a disjunction of unambiguous propositions (of type 00 =
¬00). This is why Arrow’s theorem in its general version is not a strong

dictatorship result.

10 Conclusion

The relevance-based approach to judgment aggregation hopefully opens up new per-

spectives, by overcoming proposition-wise independence without allowing for arbi-

trariness. On the constructive side, I have generalized sequential-priority and premise-

based aggregation towards an arbitrary priority structure, captured by a ‘priority

graph’ over the propositions. On the axiomatic side, I have introduced more gen-

eral, relevance-based axioms of independence and unanimity-preservation, and shown

various impossibility theorems based on these axioms. In the special case of the

classical relevance notion, the two axioms reduce to their classical counterparts, and

25Given a set  ⊆ ,  need of course not contain a proposition that is its disjunction. The

disjunction is unique as long as  contains no two equivalent propositions.
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the theorems reduce to familiar results such as the Arrow-like theorem in judgment

aggregation.

This paper is a first step. Future research could focus on other relevance-based

aggregation rules, axioms and theorems. It could also address a more normative ques-

tion: how should the relevance relation be designed in the first place? For instance,

when should relevance be transitive? Reflexive? Acyclic? Should relevance connec-

tions and logical connections be related in any systematic way? Under the priority

interpretation of relevance, which propositions should have priority? Such questions

are obviously difficult. Yet the relevance-based approach needs systematic criteria for

designing the relevance relation.
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A Proofs

I now prove all results. Throughout,  is the set of individuals {1  }.

A.1 Theorem 1 on priority rules

To prove this theorem, let  ≡ ()∈0
be a priority rule relative to a priority graph

R on a finite agenda . The set of R-maximal (resp. R-minimal) elements of a set
 ⊆  is denoted maxR() (resp. minR()) and contains those  ∈  for which

there is no  ∈ \{} such that R (resp. R). As R is acyclic on 0 and as 0
is finite,

max
R

 6= ∅ and min
R

 6= ∅ for all ∅ 6=  ⊆ 0 (10)
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(a) LetR be transitive. Suppose for a contradiction that IIP is violated. Then not
all  ∈ 0 have the property that, for all (1  ) (

0
1  

0
) ∈ J , if  ∩R() =

 0 ∩R() for all  then
 (1  ) ∩ {±} =  ( 01  

0
) ∩ {±} (11)

Let  ∈ 0 be R-minimal such that this property fails. Pick (1  ) ( 01   0) ∈
J  such that  ∩ R() =  0 ∩ R() for all  and (11) is violated. Choose any

 ∈ R()\{±}. By R’s transitivity R() ⊆ R(), and so  ∩R() =  0 ∩R() for
all . By ’s minimality property, (11) holds for  instead of . As this is so for all

 ∈ R()\{±},
 (1  ) ∩R()\{±} =  ( 01  

0
) ∩R()\{±} (12)

Now let  := {̃ ∈ {±} : the set (12) entails ̃}.
Case 1 :  6= ∅. Then, by definition of the priority rule, we have  (1  ) ∩

{±} =  and  ( 01  
0
) ∩ {±} =  . This implies (11), contradicting the choice

of .

Case 2 :  = ∅. Then, again by definition of the priority rule,  (1  ) ∩
{±} = (1∩{±}  ∩{±}) and  ( 01   0)∩{±} = (

0
1∩{±}   0∩

{±}). These two sets are distinct as (11) is violated. So there is an  such that

 ∩ {±} 6=  0 ∩ {±}. So, as  ∩ R() =  0 ∩ R(), R() cannot contain both
of ±, hence contains none of ± by negation-invariance. In other words, R() =
R()\{±}. So the set (12) equals  (1  ) ∩ R(), which contains a member
of each pair ± ∈ R() and thus entails  or ¬ by non-underdetermination. This
contradicts that  = ∅.

(b) Assume the transitivity and quasi-independence conditions. For all  ∈ , put

R := R()∪ {±} and R := R()\{±}. Let (1  ) ∈ J . The consistency of

 :=  (1  ) follows from three claims:

Claim 1 :  = ∪∈maxR0R; hence,  = ∪∈maxR0( ∩R).

Claim 2 : for any pairwise irrelevant propositions ()∈  the sets (R)∈ are logi-
cally quasi-independent; hence, the sets (R)∈maxR0

are logically quasi-independent.

Claim 3 :  ∩R is consistent for each  ∈ 0, hence also for each  ∈ maxR0.

Proof of Claim 1. For a contradiction, suppose \ ∪∈maxR0
R 6= ∅. Then,

by negation-invariance, 0\ ∪∈maxR0 R 6= ∅. Hence by (10) there is a  ∈
maxR (0\ ∪∈maxR0 R). As  ∈ ∪∈maxR0R, we have  ∈ maxR0. So 

is relevant to some 0 ∈ 0\{}. As  is maximal in 0\∪∈maxR0 R and relevant

to 0, it does not belong to 0\∪∈maxR0
R. So 0 ∈ ∪∈maxR0

R. Hence, as R is

transitive,  is relevant to some  ∈ maxR0, a contradiction as  ∈ ∪∈maxR0
R.

Proof of Claim 2. Consider pairwise irrelevant propositions ()∈ and consistent
sets  ⊆ R ( ∈ ) whose union contains no pair ±. I show that ∪∈ is

consistent. Without loss of generality let each  contain a member of each pair

± ∈ R (otherwise extend the ’s to consistent sets ̄ ⊆ R with this property;

the present proof shows the consistency of ∪∈̄, hence that of ∪∈). As the sets

R() ( ∈ ) are logically quasi-independent, (*) ∪∈( ∩R()) is consistent. By
non-underdetermination, (**) each  ∩ R() entails a ̃ ∈ {±}. Since each 

entails ̃ (∈ {±}) and by definition equals (∩R())∪{} or (∩R(̃))∪{¬},
it must by consistency equal ( ∩ R()) ∪ {̃}. So, taking the union, ∪∈ =

∪∈(( ∩R()) ∪ {̃}). This set is consistent by (*) and (**).
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Proof of Claim 3. Suppose the contrary: there is a  ∈ 0 for which  ∩R is

inconsistent. By (10), we can pick a  ∈ 0 that is R-maximal subject to  ∩ R

being inconsistent. By an argument similar to that made for Claim 1,

R = ∪∈maxR(0∩R)R; hence  ∩R = ∪∈maxR(0∩R)( ∩R). (13)

By Claim 2, the sets R  ∈ maxR(0∩R), are logically quasi-independent. Hence,

as each  ∩ R in (13) is consistent (by the maximality of ), the set  ∩ R =

 ∩ R()\{±} is consistent. By construction of priority rules, the consistency is
inherited to the augmented set (∩R()\{±})∪(∩{±}) (see the restated definition
in footnote 11). This set equals  ∩R. The consistency of  ∩R contradicts the

choice of . ¥

A.2 Constrained entailment and (semi-)decisive coalitions: prepara-

tory lemmas

Before proving the impossibility theorems, I show some lemmas that help us under-

stand constrained entailment and its effect on (semi-)winning coalitions.

First, as this definition of constrained entailment is symmetric in  and ¬, con-
strained entailment satisfies contraposition, as the reader checks easily:

Lemma 1 (contraposition) For all   ∈  and all  ⊆ R,  `R  ⇔ ¬ `R
¬.

I now give a sufficient condition for when a constrained entailment reduces to an

unconditional entailment.

Lemma 2 For all   ∈  with R() ⊆ R(¬) or R(¬) ⊆ R(),  `R  if and only

if  ` .

Proof. Let   be as specified. Obviously,  `  implies  `R . Suppose for a

contradiction that  `R , say  `R , but  6` . Then {¬} is consistent. So
there is a  ∈ J containing  and ¬. Then
• the set  ∩ {¬ : R} is an explanation of ;
• the set  ∩ {¬ : R¬} is an explanation of ¬.

One of these two sets is a superset of the other one, asR() ⊆ R(¬) orR(¬) ⊆ R();
call this superset  . As  `R ,  ∪  is consistent. So, as  entails both  and

¬, also  ∪  ∪ {¬} is consistent. In particular,  ∪ {¬} is consistent, in
contradiction to the fact that  `R . ¥

The following fact helps in choosing the set  in a constrained entailment.

Lemma 3 For all   ∈ , if  `R , then  `R  for some set  ⊆ R\(R() ∪
R(¬)).

Proof. Let   ∈ , and assume  `R , say  `R . The proof is done by show-

ing that  `R \(R()∪R(¬)) . Suppose for a contradiction that not  `R \(R()∪R(¬))
. Then

(*) {¬} ∪  \(R() ∪R(¬)) is consistent.
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I show that

(**)  ` 0 for all 0 ∈  ∩R() and ¬ ` 0 for all 0 ∈  ∩R(¬),
which together with (*) implies that {¬} ∪  is consistent, a contradiction since

 `R . Let 0 ∈  ∩ R(). For a contradiction suppose  6` 0. Then there is a
 ∈ J containing  and ¬0. The set  := ∩{¬ : R} does not entail ¬, hence
is an explanation of  (by definition of a relevance relation). So  ∪  is consistent

(as  `R ), a contradiction since  ∪  contains both 0 and ¬0. This shows that
 ` 0. For analogous reasons, ¬ 6` 0 for all 0 ∈  ∩ . ¥

Now I introduce notions of decisive and semi-decisive coalitions, and I show that

semi-decisiveness is preserved along paths of constrained entailments.

Definition 14 A possibly empty coalition  ⊆  is decisive (respectively, semi-

decisive) for  ∈  if its members have judgment sets  ∈ J ,  ∈ , containing

, such that  ∈  (1  ) for all  ∈ J ,  ∈ \ (respectively, for all  ∈ J ,
 ∈ \, not containing ).

While a decisive coalition for  can always enforce  (by using appropriate judg-

ment sets), a semi-decisive coalition can enforce  provided all other individuals reject

. Let W() and C() be the sets of decisive and semi-decisive coalitions for  ∈ ,

respectively. The next lemma shows that semi-decisiveness is ‘contagious’ along con-

strained entailments. The lemma parallels many other ‘contagion lemmas’ in social

choice theory; indeed most standard proofs of Arrow’s Theorem use a contagion

lemma (see, e.g., Gaertner’s [21] textbook).

Lemma 4 (contagion lemma) For all   ∈ , if  `R  then C() ⊆ C(). In
particular, if  ⊆  is pathlinked, all  ∈  have the same semi-decisive coalitions.26

Proof. Suppose   ∈ , and  `R , say  `R , where by Lemma 3 without

loss of generality  ∩R() =  ∩R(¬) = ∅. Let  ∈ C(). So there are sets  ∈ J ,
 ∈ , containing , such that  ∈  (1  ) for all  ∈ J ,  ∈ \, containing
¬. By  ’s consistency with every explanation of , it is possible to change each ,

 ∈ , into a set (still in J ) that contains every  ∈  and has the same intersection

with R() as ; this change preserves the required properties, i.e., it preserves that
 ∈  for all  ∈  (as R is a relevance relation), and preserves that  ∈  (1  )

for all  ∈ J ,  ∈ \, containing ¬ (by  ∩ R() = ∅ and IIP). So we may

assume without loss of generality that  ⊆  for all  ∈ . Hence, by {} ∪  ` ,

all ,  ∈ , contain .

To establish that  ∈ C(), I consider any sets  ∈ J ,  ∈ \, all containing
¬, and I show that  ∈  (1  ). We may assume without loss of generality that

 ⊆  for all  ∈ \, by an argument like the one above (using that  is consistent
with any explanation of ¬, R is a relevance relation,  ∩R(¬) = ∅, and IIP). As
{¬} ∪  ` ¬, all ,  ∈ \, contain ¬. Hence  ∈  (1  ). Moreover,

 ⊆  (1  ) by  ⊆ R. So, as {} ∪  ` ,  ∈  (1  ), as desired. ¥

For any set S of coalitions  ⊆  , let S := { 0 ⊆  :  ⊆ 0 for some  ∈ S}.
26Constrained entailments preserve semi-decisiveness but usually not decisiveness.

29



Lemma 5 For all   ∈ ,

(a)  `R  irreversibly if and only if ¬ `R ¬ irreversibly;
(b) if  `R  irreversibly then C() ⊆ C().

Proof. Let   ∈ . Part (a) follows from Lemma 1 and the fact that, for all

 ⊆ R, {} ∪  6`  if and only if {¬} ∪  6` ¬.
Regarding (b), suppose  `R  irreversibly, say  `R  with {}∪ 6` . We can

assume without loss of generality that  ∩R() =  ∩R(¬) = ∅, since otherwise
we could replace  by  0 :=  \(R()∪R(¬)), for which still  `R  (by the proof

of Lemma 3) and {} ∪  0 6` . To show C() ⊆ C(), consider any  0 ∈ C(). So
there is a  ∈ C() with  ⊆  0. Hence there are  ∈ J ,  ∈ , containing , such

that  ∈  (1  ) for all  ∈ J ,  ∈ \, containing ¬. Like in earlier proofs,
I may suppose without loss of generality that, for all  ∈ ,  ⊆  (using that  is

consistent with all explanations of , R is a relevance relation, IIP, and  ∩R() = ∅);
hence, by {} ∪  ` ,  ∈  for all  ∈ . Further, as {¬ } ∪  is consistent (by

{} ∪  6` ), there are sets  ∈ J ,  ∈  0\, such that {¬ } ∪  ⊆  for all

 ∈  0\.
I have to show that  ∈  (1  ) for all  ∈ J ,  ∈ \ 0, containing ¬.

Consider such sets ,  ∈ \ 0. Again, we may assume without loss of generality
that for all  ∈ \0,  ⊆  (as  is consistent with all explanations of ¬, R is a

relevance relation, IIP, and  ∩R(¬) = ∅), which by {¬} ∪  ` ¬ implies that
¬ ∈  for all  ∈ \ 0. In summary then,

 ⊇
⎧⎨⎩
{ } ∪  for all  ∈ 

{¬ } ∪  for all  ∈  0\
{¬¬} ∪  for all  ∈ \ 0.

So  ∈  (1  ) (by the choice of the sets ,  ∈ ) and  ⊆  (1  ) (by

 ⊆ R). Hence, as {} ∪  ` ,  ∈  (1  ), as desired. ¥

In the following characterisation of decisive coalitions it is crucial that  ∈ R.

Lemma 6 If  ∈ R, W() = { ⊆  : all coalitions  0 ⊇  are in C()}.

Proof. Let  ∈ R and  ⊆  . If  ∈ W() then clearly all coalitions  0 ⊇ 

are in C(). Conversely, suppose all coalitions  0 ⊇  are in C(). As  ∈ C(), there
are sets ,  ∈ , containing , such that  ∈  (1  ) for all sets ,  ∈ \,
not containing . To show that  ∈W(), consider any sets ,  ∈ \ (containing

or not containing ); I show that  ∈  (1  ). Let 
0 :=  ∪ { ∈ \ :  ∈ }.

By  ⊆  0,  0 ∈ C(). So there are sets ,  ∈ 0, containing , such that

 ∈  (1  ) for all sets ,  ∈ \ 0, not containing . As  has a single

explanation, we have for all  ∈  0  ∩ {¬ :  ∈ R()} =  ∩ {¬ :  ∈ R()},
hence ∩R() =  ∩R(). So, by IIP and the definition of the sets ,  ∈  0, and
since  6∈  for all  ∈ \ 0,  ∈  (1  ), as desired. ¥

A.3 Theorems 2 and 3 on (semi-)vetodictatorship

Proof of Theorem 2. Let R be inconsistent and properly pathlinked. I first prepare
the proof by establishing three simple claims.
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Claim 1. (i) The set C() is the same for all  ∈ R; call it C0. (ii) The set C(¬)
is the same for all  ∈ R.

Part (i) follows from Lemma 4. Part (ii) follows from it too because, by Lemma

1, {¬ :  ∈ R} is like R pathlinked, q.e.d.
Claim 2. ∅ 6∈ C0 and  ∈ C0.
By UAP,  ∈ C0. Suppose for a contradiction that ∅ ∈ C0. Consider any

judgment set  ∈ J . Then  (  ) contains all  ∈ R, by  ∈ C0 if  ∈  , and

by ∅ ∈ C0 if  6∈  . Hence  (  ) is inconsistent, a contradiction, q.e.d.

By Claim 2, there is a minimal coalition  in C0 (with respect to inclusion), and
 6= ∅. By  6= ∅, there is a  ∈ . Write − := \{}. As R is properly

pathlinked, there exist  ∈ R and   ∈  such that  ``R ,  `R  properly, and

 ``R .

Claim 3. C() = C() = C0; hence  ∈ C() and − 6∈ C().
By Lemma 4, C() ⊆ C() ⊆ C() ⊆ C(). So C() = C() = C() = C0, q.e.d.
Now let  be such that  `R , where by Lemma 3 without loss of generality

 ∩R() =  ∩R(¬) = ∅. By  ∈ C(), there are judgment sets  ∈ J ,  ∈ ,

containing , such that  ∈  (1  ) for all  ∈ J ,  ∈ \, not containing . I
assume without loss of generality that

for all  ∈ − ,  ⊆ , hence (by {} ∪  ` )  ∈  (14)

which I may do by an argument like that in the proof of Lemma 4 (using that  is

consistent with any explanation of , R is a relevance relation,  ∩R() = ∅, and
IIP). By (14) and as − 6∈ C() (see Claim 3), there are sets  ∈ J ,  ∈ \− ,
containing ¬, such that, writing  :=  for all  ∈ − ,

¬ ∈  (1  ). (15)

I may without loss of generality modify the sets ,  ∈ \− , into new sets in J as

long as their intersections with R(¬) stays the same (because the new sets then still
contain ¬ as R is a relevance relation, and still satisfy (15) by IIP). First, I modify

the set  for  = : as  `R  properly,  ∩ {¬ :  ∈ R(¬)} (an explanation of
¬) is consistent with any explanation of , hence with  ∩{¬ :  ∈ R()}, so that
I may assume that  ∩ {¬ :  ∈ R()} ⊆  ; which implies that

 ∩R() =  ∩R() for all  ∈ . (16)

Second, I modify the sets ,  ∈ \: I assume (using that  ∩R(¬) = ∅ and  ’s
consistency with any explanation of ¬) that

for all  ∈ \,  ⊆ , hence (as {¬} ∪  ` ¬) ¬ ∈ . (17)

The definition of the sets ,  ∈ , and (17) imply, via (16) and IIP, that

 ∈  (1  ). (18)

By (15), (18), and the inconsistency of {¬} ∪  , the set  is not a subset of

 (1  ). So there is a  ∈  with  6∈  (1  ). We have {} ∈ C(¬} for
the following two reasons.
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•  contains ¬; otherwise  ∈  for all  ∈  , so that  ∈  (1  ) by

 ∈ R.
• Consider any sets  ∈ J ,  6= , not containing ¬, i.e., containing . I show
that ¬ ∈  :=  (1  −1   +1  ). For all  6= ,  ∩ {¬ :
 ∈ R()} is consistent with , hence is an explanation of  (as R satisfies

non-underdetermination); for analogous reasons,  ∩ {¬ :  ∈ R()} is an
explanation of . These two explanations must be identical by  ∈ R. So
∩R() = ∩R(). Hence, by  6∈  (1  ) and IIP,  6∈  . So ¬ ∈  ,

as desired.

By {} ∈ C(¬) and Claim 1, {} ∈ C(¬) for all  ∈ R. So  is a semi-

vetodictator. ¥

Proof of Theorem 3. Let {± :  ∈ R} be properly pathlinked. I will reduce the
proof to that of Theorem 2. I start again with two simple claims.

Claim 1. The set C() is the same for all  ∈ {± :  ∈ R}; call it C0.
This follows immediately from Lemma 4, q.e.d.

Claim 2. ∅ 6∈ C0 and  ∈ C0.
By UAP,  ∈ C() for all  ∈ R; hence  ∈ C0. This implies, for all  ∈ R,

that ∅ 6∈ C(¬); hence ∅ 6∈ C0, q.e.d.
Now by an analogous argument to that in the proof of Theorem 2, but based this

time on the present Claims 1 and 2 rather than on the two first claims in Theorem

2’s proof, one can show that there exists an individual  such that {} ∈ C(¬) for
all  ∈ R. So, by the present Claim 1 (which is stronger than the first claim in

Theorem 2’s proof),

{} ∈ C() for all  ∈ R (19)

So  is a semi-dictator, for the following reason. Let  ∈ R and let (1  ) ∈ J 

be such that  ∈  and  6∈ ,  6= . By (19) there is a set  ∈ J containing

 such that  ∈  (1  ) for all  ∈ J ,  6= , not containing . Since  has

only one explanation (by  ∈ R), the two explanations  ∩ {¬ :  ∈ R()} and
 ∩ {¬ :  ∈ R()} are identical. So  ∩R() =  ∩R(). Hence, using IIP and
the definition of  ,  ∈  (1  ), as desired. ¥

A.4 Theorems 4 and 5 on weak or strong dictatorship and related

results

Proof of Theorem 4. Let {± :  ∈ R} be properly and irreversibly pathlinked. By
Theorem 3, there is a semi-dictator . I show that  is a dictator.

Claim. For all  ∈ {± :  ∈ R}, C() contains all coalitions containing .
Consider any  ∈ {± :  ∈ R} and any coalition  ⊆  containing . By proper

pathlinkedness there exist  ∈ R and   ∈  such that  ``R  `R  ``R , where

 `R  is a properly constrained entailment. By {} ∈ C() and Lemma 4, {} ∈ C().
So, by Lemma 5(b),  ∈ C(). Hence, by Lemma 4,  ∈ C(), q.e.d.

By this claim and Lemma 6, {} ∈ W() for all  ∈ R. This implies that  is a
dictator, by an argument similar to the one that completed the proof of Theorem 3.

¥

Proof of Remark 6. Let  be the general preference agenda with Arrovian R (the

32



proof for the strict preference agenda is left to the reader). Recall that R = { :
  ∈   6= } where  := ¬. I show that (i) R is pathlinked, and (ii) there
are   ∈ R with proper and irreversible constrained entailments  `R ¬ `R .

Then, by (i) and Lemma 1, {¬ :  ∈ R} is (like R) pathlinked, which together
with (ii) implies that {± :  ∈ R} (= ) is properly and irreversibly pathlinked,

completing the proof.

Proof of (i): Consider any  00 ∈ R. I show that  ``R 00. The
paths to be constructed depend on whether or not  ∈ {0 0} and whether or not
 ∈ {0 0}. I consider the following list of cases (which is exhaustive since  6=  and

0 6= 0):
• Case  6= 0 0& 6= 0 0: Here  `R{00} 00.
• Case  = 0& 6= 0 0: Here  `R{0} 0 = 00.
• Case  = 0& 6= 0 0: Here  `R{0} 0 `R{0} 00.
• Case  = 0& 6= 0 0: Here  `R{0} 0.
• Case  = 0& 6= 0 0: Here  `R{0} 0 `R{} 0.
• Case  = 0& = 0: Here  `R .

• Case  = 0& = 0: Here, for any  ∈ \{ },  `R{}  `R{}
 `R{} .

Proof of (ii): For any pairwise distinct options    ∈ , we have  `R{}
 (= ¬), and  `R{} , in each case properly and irreversibly. ¥

Proof of Remark 7. Assume classical relevance. Constrained and conditional en-

tailment coincide by Remark 4. This implies the first bullet point. The second bullet

point follows from the additional fact that, for any   ∈  ⊆ , the following are

equivalent (see Dokow and Holzman [15] for a parallel argument): (i)  irreversibly

constrainedly (= conditionally) entails  in virtue of , i.e.,  `R  while {}∪ 6` ;

(ii) there is an instance of pair-negatability, i.e., the set  := {¬}∪ is inconsistent
and becomes consistent if one negates  and/or ¬. Finally, pathlinkedness implies
proper pathlinkedness, because any path of conditional entailments from a proposi-

tion to its negation must contain at least one properly conditional entailment (as is

well-known since Nehring and Puppe [37]), and because ‘conditional’ is equivalent to

‘constrained’. ¥

Proof of Theorem 5. Let the assumptions hold. By Theorem 4, there is a dictator

. To show that  is a strong dictator, I consider any (1  ) ∈ J , and show that

 =  (1  ). It suffices to show that  ⊆  (1  ). Suppose  ∈ . By

assumption,  is the disjunction of some set  ⊆ R. So, as  ∈ , we can pick a

 ∈  ∩ . As  ∈  ∩R and as  is a (weak) dictator,  ∈  (1  ). So, as  is

the disjunction of a set containing , we have  ∈  (1  ), as desired. ¥

33


