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Abstract. The new �eld of judgment aggregation aims to merge many individual
sets of judgments on logically interconnected propositions into a single collective set of
judgments on these propositions. Judgment aggregation has commonly been studied
using classical propositional logic, with a limited expressive power and a problematic
representation of conditional statements (�if P then Q�) as material conditionals. In
this methodological paper, I present a simple uni�ed model of judgment aggregation
in general logics. I show how many realistic decision problems can be represented in
it. This includes decision problems expressed in languages of classical propositional
logic, predicate logic (e.g. preference aggregation problems), modal or conditional
logics, and some multi-valued or fuzzy logics. I provide a list of simple tools for
working with general logics, and I prove impossibility results that generalise earlier
theorems.

Key words: judgment aggregation, discursive dilemma, modelling methodology, gen-
eral logics, impossibility theorem

1 Introduction

The traditional model of social choice theory, preference aggregation, de�nes a collect-
ive decision problem as the problem of forming collective preferences over a given set
of alternatives (actions, policies, candidates, states of society etc.). By contrast, the
newly arising model of judgment aggregation de�nes a collective decision problem as
the problem of forming collective judgments (acceptance or rejection) on a given set
of logically interrelated propositions. As a simple example, suppose the population
of a country disagrees on whether the following propositions hold:2

a : The birth rate is too low to guarantee long-term economic stability.
b : More immigration is needed.
a! b : If the birth rate is too low to guarantee long-term economic stability,

then more immigration is needed.

Reaching collective judgments on logically interrelated propositions is non-trivial.
Suppose that in the example the population is split into three camps of equal size.As

1This paper was presented at di¤erent occasions under the title �Judgment aggregation in general
logics�, before a referee kindly recommended the new title. Many thanks to Ruvin Gekker, Franz
Huber, Philippe Mongin, Marc Pauly, Nobu-Yuki Suzuki, and two referees for most helpful advice.
The paper greatly bene�ted from discussions with Christian List and extensive comments by Martin
van Hees �warm thanks also to them. This research was supported by the Alexander von Humboldt
Foundation, the Federal Ministry of Education and Research, and the Program for the Investment
in the Future (ZIP) of the German Government.

2This example is taken from an unpublished opinion poll conducted by André Habisch, Christian
List and René Schmidpeter, who �nd a similar collective inconsistency.
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Figure 1: A discursive dilemma, shown as a table (left) and as a Venn diagram (right)

shown in Figure 1, each camp holds a consistent set of judgments; for instance the
�rst camp accepts a and a ! b, and accordingly accepts b. Yet the propositionwise
majority rule results in an inconsistent set of judgments, namely fa; a! b;:bg. Such
situations are known as discursive dilemmas (e.g. Pettit 2001).

An agenda of judgment aggregation (i.e. a set of propositions under consideration)
can be represented by a Venn diagram: each proposition is represented by a set of
worlds in which the proposition is true, where an inconsistency between propositions
is indicated by the non-overlap of their sets of worlds. For instance, in the Venn
diagram of our example agenda (see Figure 1) the propositions a; a ! b;:b have
non-overlapping sets of worlds, i.e. in no world all of a; a! b;:b are true.3

How can the group reach consistent decisions in the face of a discursive dilemma?
Two aggregation rules have received particular attention; let me de�ne them for our
example. Under the premise-based rule, the group takes majority votes only on a and
a! b (the premises) and decides b (the conclusion) by entailment from the decisions
on a and a ! b. So, a and a ! b are accepted, and hence b is accepted. Under
the conclusion-based rule, the group takes a majority vote only on b, ignoring any
majority verdicts on a and a! b. So b is rejected and no collective judgment is made
on a and a! b.

The propositions in judgment aggregation can be atomic (such as a or b) or com-
pound (such as a ! b), and they can express various things such as beliefs (e.g.
�pollution creates global warming�), desires (e.g. �global warming is undesirable�)
and act preferences (e.g. �measure X against pollution should be taken�). Judgment
aggregation is also close to real decision situations. First, individuals are not required
to rank complex alternatives but only to have opinions on di¤erent issues (propos-
itions). Second, real decision situations often consist indeed in having to accept or
reject di¤erent interconnected propositions.

In this paper, I argue that judgment aggregation allows one to study a wide range
of realistic collective decision problems provided that the model is extended beyond
classical propositional logic. While classical propositional logic can adequately rep-

3The Venn diagram shown in Figure 1 already anticipates that �!� should not be a material
conditional, by including worlds in which a! b is false without both of a and :b being true.
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resent decision problems whose propositions involve the logical connectives �and�,
�or�, �not� (or other truth-functional connectives), most real problems do not take
this simple form and require more expressive languages. Problems involving condi-
tional statements like a! b above usually require a conditional logic, although they
were so far represented in classical propositional logic by using the (problematic)
material conditional, as explained later.4 Other realistic decision problems may be
represented in a predicate logic, in which atomic propositions are not taken as prim-
itives but are constructed from constants, variables, functions and relations (just as
in common language sentences are not primitives). This allows for instance to embed
preference aggregation into judgment aggregation. Many decision problems can be
represented using modal logics, in which one can express propositional attitudes such
as �it is desirable that p�, �it is ethically required/allowed that p�, �it is probable
that p�etc. Decision problems with vague propositions (like �equality in society is
very important�) may require a fuzzy logic.

The good news is that a uni�ed model of judgment aggregation is still possible,
despite of the di¤erences between the logics necessary for the various applications. I
introduce a model of �general logics�that is not restricted to any particular logic but
allows most practically relevant logics. Several previous results, if suitably restated,
can be shown to hold in general logics; many others are yet to be derived.

In Section 2, I introduce the model, which is based on a set of mild conditions on
the logic. In Section 3, I illustrate the model by discussing several types of collective
decision problems, all of which can be represented within the model. In Section 4,
I provide a list of simple tools that can be used to prove results in general logics;
these tools underlie many existing proofs in judgment aggregation, which shows that
one can conveniently work in general logics. In Section 5, I prove an impossibility
theorem, which generalises earlier results to general logics. In Section 6, I mention
that it can also be interesting to derive results restricted to a particular logic (often
not classical propositional logic), which leads me to contrast judgment aggregation
in general logics with judgment aggregation in a particular logic. In Section 7, I
summarise and conclude the paper.

On a less formal basis, judgment aggregation has been discussed already for a
while, partly focussing on the distinction between premise-based and conclusion-
based decision-making (e.g. Kornhauser and Sager 1986, Chapman 1998, 2002, Pettit
2001, Brennan 2001, Bovens and Rabinowicz 2004). List and Pettit (2002) formalised
judgment aggregation in classical propositional logic, and proved a �rst social-choice-
theoretic impossibility result. This sparked a series of contributions. Pauly and van
Hees (2004), Dietrich (2004), Gärdenfors (2004), Nehring and Puppe (2004), van Hees
(2004) and Mongin (2005) prove several impossibility theorems, whose main message
is that, given certain logical connections between the propositions under decision,
propositionwise aggregation (satisfying some mild conditions) is impossible. Several
important impossibility results follow from Nehring and Puppe�s (2002) theorems
about property spaces. To escape impossibilities, one may for instance restrict the
domain of the aggregation rule (List 2003), restrict the independence condition to
premises (Dietrich 2004), use fusion operators (Pigozzi 2004), or use sequential de-

4 In the literature, a problematic use of material conditionals (by authors including myself) oc-
curs mainly when giving examples of judgment aggregation. Most formal results do not use any
conditionals; they are thus silent about decision problems like that of our immigration example.
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cision rules (List 2004b and Dietrich and List 2005). The probability of �correct�
collective judgments is analysed by Bovens and Rabinowicz (2004) and List (2004a).
Gärdenfors (2004) and Gekker (2003) question the requirement that judgments must
be complete. Strategy-proof judgment aggregation is analysed in Dietrich and List
(2004a). List and Pettit (2004) discuss the connection to preference aggregation.

The models of Pauly and van Hees (2004) and van Hees (2004) allow for degrees
of acceptance, a signi�cant generalisation of the informational input and output of
decision rules, but still with the same limited expressive power of propositions as in
the standard model. The di¤erence between their model generalisation and the one
undertaken here is that they generalise the attitude towards propositions, whereas
I generalise what propositions can express. Their models use multi-valued logics.
Also in the present model the propositions may belong to a multi-valued (or fuzzy)
logic, but even then what is aggregated are sets of judgments, not entire valuation
functions.5

2 A judgment aggregation model in general logics

2.1 Why judgment aggregation needs logic

Usually, a logic is de�ned by (i) certain rules for constructing propositions (state-
ments), (ii) a notion of (semantic) entailment that speci�es when a set of proposi-
tions A entails a proposition p (if A entails p, we write A � p), and (iii) a notion
of (syntactic) derivability/provability that speci�es rules for how to derive/prove a
proposition p from a set of proposition A (if p is derivable from A, we write A ` p).
The rules for deriving/proving are complete and sound if all propositions entailed by
a set, and no other propositions, are derivable from the set (i.e. A � p if and only if
A ` p), as it is the case for classical propositional or predicate logic.

In judgment aggregation, we need a logical framework in order to de�ne rationality
notions, notably the notions of consistency and deductive closure of sets of judgments.
Depending on whether one holds a semantic or a syntactic concept of rationality, one
might choose to de�ne these notions in terms of entailment or in terms of derivability.
In particular, in the �rst case a set of judgments is consistent if it does not entail
a contradiction, and in the second case it is consistent if no contradiction can be
derived/proven from it. Being rational in a semantic or a syntactic sense di¤ers from
each other in a roughly similar way as �believing what is true�di¤ers from �believing
what one can prove�(which in turn resembles the distinction between true beliefs and
justi�ed beliefs). Interpretational di¤erences aside, semantic and syntactic rationality
notions may of course become formally identical if the rules of derivation are complete
and sound (see above): then a set of judgments is consistent (respectively deductively
closed) in the semantic sense if and only if it is so in the syntactic sense.

2.2 General logics

Whether we want to de�ne the rationality notions semantically or syntactically, all
we need is the entailment relation � (respectively derivability relation `) between

5For a multi-valued or fuzzy logic (with more than two truth values), a valuation function contains
more information than a set of judgments: it gives a truth-value to each proposition, rather than
just telling which propositions are �accepted�.
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sets of propositions A and propositions p. Thus the model will leave open how this
relation is itself generated: the model does not specify any particular way to de�ne
�, say in terms of truth-functions or interpretations (respectively any particular rules
of deduction to de�ne `). This is why I speak of �general�logics.

Moreover, we need only one of the two relations: only � if we go semantically
and only ` if we go syntactically. Thus our general logic is in fact only half a logic,
namely either a �general semantic�or a �general syntax�. Hence I will use a single
relation, which may be interpreted either as entailment � or as derivability ` (as I said,
depending on one�s rationality concept). Despite of allowing both interpretations, I
will use the symbol � and speak of �entailment�, because I tend to �nd semantic
rationality notions more natural for the purpose of judgment aggregation.6

So let me de�ne a logic or formal language (with negation :) as a pair (L;�)
consisting of
� a non-empty set L of formal expressions7, called propositions, such that p 2 L
implies :p 2 L;

� a binary relation � (� P(L)� L) between sets A � L and propositions p 2 L,
called the entailment relation; A � p is read �A entails p�or �p follows from
A�; I write p1; :::; pk � p for fp1; :::; pkg � p.

While L tells what propositions can be formed in the language, � tells how they
are logically interrelated. Inconsistency can be de�ned out of entailment:

De�nition 1 (a) A set A � L is inconsistent if there is a p 2 L such that A � p and
A � :p; and consistent otherwise.

(b) A proposition p 2 L is a contradiction if fpg is inconsistent, a tautology if
f:pg is inconsistent, and contingent if fpg and f:pg are consistent.

This abstract notion of a logic is very �exible, as examples will illustrate. All
basic notions of judgment aggregation can be de�ned for a general logic (L;�) in the
familiar way: agendas, judgment sets, rationality conditions (e.g. deductive closure),
aggregation rules, and conditions on aggregation rules (anonymity, independence,
etc.).

To obtain interesting results such as (im)possibility theorems, some conditions on
the logic (L;�) are of course inevitable. The good news is that three mild conditions
are often su¢ cient (and necessary):8

L1 For any p 2 L, p � p (self-entailment).
L2 For any p 2 L and A � B � L, if A � p then B � p (monotonicity).
L3 The empty set ; is consistent, and each consistent set A � L has a consistent

superset B � L containing a member of each pair p;:p 2 L (completability).

Under L1-L3, any proposition entails itself, any entailment is preserved by adding
new premises, and any consistent set can be extended to a complete consistent set.

6Derivations have for me more the (epistemic) status of helping to ascertain the rationality of a
set of judgments, not of de�ning it.

7A formal expression is any (�nitely long) concatenation of symbols, such as a or c! x or 8x(Px)
or (((s+ 3 = %$.

8Monotonicity is a standard term in logic (unlike self-entailment and completability). So-called
algebraic logic investigates abstract conditions on the derivability relation ` similar to L1-L5, as I
learned from Nobu-Yuki Suzuki.
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Most realistic judgment aggregation problems can be formalised in logics of type
L1-L3 (see Section 2). While many arguments commonly used in proofs work perfectly
for a general logic (L;�) of type L1-L3, some arguments require additional properties,
which are also satis�ed by the logics of many realistic aggregation problems:

L4 For any A � L and p 2 L, if A [ f:pg is inconsistent then A � p (non-
paraconsistency).9

L5 For any p 2 L and A � L, if A � p then B � p for some �nite subset B � A
(compactness).10

See Propositions 2 and 3 for a list of useful properties under L1-L3 plus perhaps
L4,L5 (a �toolkit�in general logics). In summary, the conditions L1-L3 (plus perhaps
L4,L5) are su¢ ciently weak for representing many real-world aggregation problems,
and su¢ ciently strong for deriving many interesting results; they are therefore a
possible framework to study judgment aggregation for general logics. All this is
argued more carefully later.

Note that the only logical connective that we require is negation :. For some
purposes it may be useful to require in addition that the logic contains conjunction
^ (which implies that any other truth-functional connective, e.g. disjunction _ and
material conditional, are expressible). One thereby gains some �exibility, and loses
little generality since virtually all interesting logics contain : and ^.11

9 If L4 is considered too strong, di¤erent weakenings of it are imaginable. For instance, one might
restrict the statement in L4 to consistent sets A. Also the following two conditions are (under L1-L3)
weaker than L4: each inconsistent set entails every proposition (often this rather than L4 is called
�non-paraconsistency�); for any A;B � L and p 2 L, if A � q for all q 2 B, and B � p, then A � p
(this might be called transitivity).
10The validity of L5 can often be established as follows. First, L5 obviously holds if � is in fact a

syntactic provability relation ` (see Section 2.1), where every �proof�uses only �nitely many of the
premises. Second, L5 holds if � is semantic entailment, but a complete and sound proof technique is
known whose proofs use only �nitely many of the premises; i.e. L5 is here a corollary of a completeness
and soundness theorem. However, for some important logics (e.g. those of ch. 5.6-5.7 in Priest 2001)
no such theorem is currently known.
11One then has to assume that L contains (p ^ q) for all p; q 2 L. But this alone does not su¢ ce,

as one will also want to ensure that the �right�logical interconnections hold, e.g. that fp; qg � p^ q,
:p � :(p ^ q), etc. One might do this as follows. De�ne L0 as the set of propositions in L that
are not of the negated form :p or conjunctive form (p ^ q). (L0 contains of the �truth-functionally
non-decomposable�propositions, but note that the connectives : or ^ may occur �in�propositions
p 2 L0, e.g. when p is 8x(Px ^ :Qx).) Under the standard truth-functional rules, the truth values
of the propositions in L0 should determine those of all other propositions. A evaluation of L0 is a
function f : L0 ! fT; Fg, called consistent if fp 2 L0 : f(p) = Tg [ f:p : p 2 L0&f(p) = Fg is
consistent; f can be extended uniquely to a function f : L ! fT; Fg by requiring f jL0 = f and,
for all p; q 2 L, f(:p) 6= f(p) and f((p ^ q)) = T , f(p) = f(q) = T . To enforce the standard
truth-functional calculus for : and ^, one might impose the following condition, satis�ed by all logics
presented in Section 3. L^: (i) for all p; q 2 L we have (p ^ q) 2 L; (ii) for all A � L and p 2 L,
A � p if and only if [for each consistent evaluation f of L0, if f(q) = T for all q 2 A then f(q) = T ].
L^ ensures for instance, for all p; q 2 L, that fp; qg � p^ q, :q � :(p^ q), and if fp; qg is inconsistent
p � p^:q. (L^ far from fully specify �: it leaves open what evaluations of L0 are consistent, which is
not a matter of truth-functional calculus.) Since L^ guarantees that entailment follows the standard
truth-functional rules for : and ^, it also guarantees that (in)consistency respects these rules. On
the other hand, L^ might be seen as a bit strong; it for instance implies L4 (given L1-L3). If one
wants to enforce the standard truth-functional rules only for (in)consistency but not for entailment,
one could modify L^ by replacing (ii) by the following condition: a set A � L is consistent if and only
if there exists a consistent evaluation f of L0 such that f(q) = T for all q 2 A. Under this weakened
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2.3 The basic notions of judgment aggregation

I now de�ne the familiar notions of judgment aggregation for a general logic (L;�) of
type L1-L3 (plus perhaps L4, L5). Consider a group of n individuals denoted 1; :::; n
(n � 2), having to make collective judgments on interrelated propositions.

The agenda. The agenda (containing the propositions under consideration) is
any non-empty set X � L that is the union of pairs fp;:pg with p not itself a
negated proposition. The starting example has the agenda X = fa;:a; a! b;:(a!
b); b;:bg, where! should be a subjunctive conditional and (L;�) a conditional logic,
as explained later. By saying that X contains the propositions under consideration, I
am vague on purpose, in order to cover di¤erent types of aggregation problems. The
standard case is surely that X contains propositions of which the group has to decide
whether or not to believe them (e.g. �higher interest rates reduce in�ation�).12

Judgment sets. A judgment set (held by an individual or the collective) is a subset
A � X, where p 2 A means �p is accepted�. Here, the meaning of �acceptance�
depends on the type of aggregation problem, as just indicated. In the (standard)
case of a decision problem about reaching beliefs, �accepting�p is �believing�p.13 A
judgment set A is
� complete if it contains at least one member of each pair p;:p 2 X;
� weakly consistent if it contains at most one member of each pair p;:p 2 X;14
� consistent if (see De�nition 1) there is no p 2 L with A � p and A � :p;
� deductively closed if, for each p 2 X, if A � p then p 2 A;15
� fully rational if A satis�es completeness and consistency (and so all other ra-
tionality conditions by Proposition 1).

For instance, for the above example agenda X, the judgment set A = ; is con-
sistent and deductively closed but incomplete, the judgment set A = fa; a ! b;:bg
is complete but only weakly consistent and not deductively closed, and the judgment
set A = fa;:(a ! b); bg is fully rational (since ! is a subjunctive conditional, as
de�ned below).

L^, for all p; q 2 L the set fp; q;:(p ^ q)g is still inconsistent, but fp; qg needn�t entail p ^ q. L^ no
longer implies L4.
12One can conceive other types of decision problems: ones where X contains propositions of which

the question is whether to desire them (e.g. �Western products are sold all over the world�), or ones
where X contains propositions of which the question is whether to make them true (e.g., for the board
of a central bank, �interest rates are reduced�). (It would be problematic though to mix di¤erent types
of decision problems within the same agenda X.) I should note that a decision problem can often be
transformed into one about beliefs. In particular, one about desires can be transformed by replacing
each proposition p by the proposition �it is desirable that p�. It is philosophically controversial
whether �desires�are the same as �beliefs of desirability�, hence whether the transformation alters
the nature of the decision problem.
13Footnote 12 starts with two alternative decision problems. In the �rst, accepting p means wanting

that p. In the second, for the collective accepting p means making p true (by action) and for an
individual it means wanting that p (is made true) or something else, e.g. considering it as morally good
that p. In the jargon of philosophical logic, each notion of �acceptance� is a particular propositional
attitude.
14List and Pettit (2002) call this condition �consistency�.
15A subtly di¤erent de�nition of deductive closure is: A � X is deductive closed if A contains every

proposition p 2 X entailed by some consistent subset of A. The di¤erence between both de�nitions
arises only if A is inconsistent. Proposition 1 holds for both de�nitions.
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The various rationality conditions are interrelated as follows:16

Proposition 1 Let L1-L3 hold. For any judgment set A � X,
(a) consistency implies weak consistency, and the two are equivalent given deduct-

ive closure and L4;
(b) full rationality implies the conjunction of completeness, weak consistency and

deductive closure, and the two are equivalent given L4.

Proof. See Section 4, where we will have the tools for the proof. �

For some agendas X, the question of whether a judgment set A � X is consistent
or whether it is deductively closed is non-trivial, for reasons similar to those why
scientists may have a hard time showing contradictions or deriving theorems.17

Aggregation rules. A pro�le is an n-tuple (A1; :::; An) of (individual) judgment
sets. A (judgment) aggregation rule is a function F assigning to each pro�le (A1; :::; An)
in a given set of admissible pro�les a (collective) judgment set F (A1; :::; An) = A. The
set of admissible pro�les is called the domain of F , written Domain(F ). All common
requirements on aggregation rules (anonymity, universal domain, etc.) can easily be
stated in our general framework, as they actually appeal only to very general (i.e.
not logic-speci�c) features. For instance:

Universal Domain. The domain of F , Domain(F ), is the set of all pro�les (A1; :::;
An) of fully rational judgment sets.

Collective Rationality. The collective judgment set F (A1; :::; An) is fully rational
for every pro�le (A1; :::; An) 2 Domain(F ).

Independence. For any proposition p 2 X and pro�les (A1; : : : ; An); (A�1; : : : ;
A�n) 2 Domain(F ), if [for all individuals i, p 2 Ai if and only if p 2 A�i ] then
[p 2 F (A1; : : : ; An) if and only if p 2 F (A�1; : : : ; A�n)].

Of these requirements, the �rst one ensures that F always produces a decision
(provided individuals are fully rational), and the second one ensures that the decision
is always fully rational. The third (more controversial) one is analogous to Arrow�s
independence of irrelevant alternatives in preference aggregation, and prescribes pro-
positionwise aggregation/voting: the collective judgment on any given proposition
p 2 X should be determined solely by the individual judgments on this proposition.
Let me mention three aggregation rules, each de�ned for all pro�les (A1; :::; An) in
the universal domain.
� Majority rule: F (A1; :::; An) = fp 2 X : for more than half of the persons i,
p 2 Aig; this rule satis�es independence, but violates collective rationality even
for simple agendas, as seen in the introduction.

16 In the case of classical propositional logic, similar results are shown in List (2004b).
17The �rationality�questions about judgment sets may even be undecidable in the technical sense

(e.g. when (L;�) is a su¢ ciently rich �rst-order predicate logic and X = L): there exists no algorithm
that determines whether or not a judgment set (input) is consistent/deductively closed. In this case
also the universal domain (de�ned below) is an an undecidable set.
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� Dictatorship by person j: F (A1; :::; An) = Aj , the dictator�s judgment set; this
rule satis�es both independence and collective rationality, but is undemocratic.

� Premise-based rule for the above agenda X = fa;:a; a ! b;:(a ! b); b;:bg
and an odd group size n: F (A1; : : : ; An) contains
� a premise p 2 fa;:a; a! b;:(a! b)g if and only if for more than half of
the persons i p 2 Ai (majority voting on premises);

� a conclusion c 2 fb;:bg if and only if P � c, where P is the set of premises
in F (A1; :::; An) (no vote taken on conclusions!).

Unlike majority rule, this rule generates consistent judgment sets, but it violates
independence because of the decision method used for conclusions.

3 Decision problems and the logics to represent them

I now present several types of judgment aggregation problems, and de�ne particular
logics (L;�) that can represent them. As these logics satisfy L1-L5, the general logics
model covers all these aggregation problems. The reader might be struck by the large
variety of logics, and their complexity compared to the simple conditions L1-L5. The
general logics model is not a¤ected by the complexity of particular logics, as it draws
only on L1-L3 (plus perhaps L4,L5). So some readers might skip the details of the
de�nitions of particular logics.

3.1 Decision problems with conjunctions and disjunctions: repres-
entable in classical propositional logic

Classical propositional logic (used so far in judgment aggregation) can represent de-
cision problems involving only truth-functional connectives, such as �and�, �or�and
�not�.18 For example, the supervisory board of a loss-making Western European
company might debate the following propositions:

a : A factory should be closed down.
b : A new factory should be created in Eastern Europe.
a^b : A factory should be closed down and a new one created in Eastern Europe.
The agenda is thus X = fa;:a; b;:b; a ^ b;:(a ^ b)g in a classical propositional

logic (L;�) de�ned as follows.

Classical propositional logic. The language L is the (smallest) set such that
� L contains each given atomic proposition a; b; :::, and
� if L contains p and q, it also contains the negation :p (�not p�) and the con-
junction (p ^ q) (�p and q�).

Based on : and ^, any other truth-functional connectives can be de�ned; for
instance, the disjunction (p_ q) (�p or q�) stands for :(:p^:q) (another example is
the material conditional discussed later). To simplify, for this and all following logics

18A k-place connective (k � 1) is truth-functional if the truth-value of a proposition obtained by
applying the connective to k propositions p1; :::; pk is determined by the truth-values of p1; :::; pk
(e.g. the 2-place connective _ is truth-functional because the truth-value of p _ q is determined by
the truth-values of p and q). Thus the truth condition for a k-place truth-functional connective is
given by a k-place Boolean function B : fT; Fgk ! fT; Fg (e.g. : has the 1-place Boolean function
B : fT; Fg ! fT; Fg with B(T ) = F and B(F ) = T ). In following subsections we will encounter
non-truth-functional connectives.
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I often drop brackets when there is no ambiguity, e.g. I write a ^ :(b _ c) ^ d for
(a ^ (:(b _ c) ^ d)).

To de�ne entailment � on L, let an interpretation be a (�truth�) function v : L!
fT; Fg that assigns to each proposition a truth value T (�true�) or F (�false�), such
that, for any propositions p; q 2 L,

(:) v(:p) = T if and only if v(p) = F ,
(^) v(p ^ q) = T if and only if v(p) = T and v(q) = T .
Note that (:) and (^) imply the rules (truth conditions) of any other connectives

de�ned in terms of : and ^; for instance,
(_) v(p _ q) = T if and only if v(p) = T or v(q) = T .
Each interpretation v stands for �one way the world could be�. Entailment is

then de�ned as follows: a set A � L entails a proposition p 2 L (A � p) if for
every interpretation v with v(q) = T for all q 2 A we have v(p) = T . Informally,
A entails p in case p is true whenever each q 2 A is true. For instance, p; q � p ^ q
(since v(p) = v(q) = T implies v(p ^ q) = T by (^)), a � ::a (since v(a) = T
implies v(:a) = F by (:), which implies v(::a) = T by (:)), :a; a _ b � b (since
v(:a) = v(a _ b) = T implies v(a) = F and [v(a) = T or v(b) = T ], hence v(b) = T ),
etc.

Note that A � L is consistent (i.e. entails no pair p;:p 2 L) if and only there is
an interpretation under which each p 2 A is true. Informally, A is consistent in case
its members can be simultaneously true. For instance, f:a; a _ bg is consistent (take
v(a) = F and v(b) = T ), but fa;:ag is inconsistent.

3.2 Decision problems with conditional statements: representable
in conditional logics

Now consider aggregation problems involving (bi)conditional statements p ! q (�if
p then q�) or p $ q (�p if and only if q�), such as in most standard examples
given in the literature. How should ! and $ be formally modelled? I will discuss
three alternative routes: that of material conditionals (so far standard), that of strict
conditionals, and that of fully-�eshed subjunctive conditionals.

The route taken so far in the literature uses the classical propositional logic (L;�)
de�ned in Section 3.1, and identi�es ! and $ with the material conditional mat! and
biconditional mat$, de�ned as follows. For any p; q 2 L, p mat! q stands for :(p ^ :q)
(�not [p and not-q]�), or equivalently for :p_ q (�not-p or q�); and p mat$ q stands for
(p

mat! q) ^ (q mat! p). Thus the truth conditions for mat! and mat$ are:
(mat!) v(p! q) = T if and only if v(p) = F or v(q) = T ;
(mat$) v(p$ q) = T if and only if v(p) = v(q).
Thus mat! validates the entailment p; p mat! q � q (�modus ponens�), as well as

:p � p mat! q and q � p mat! q (the two �paradoxes of the material conditional�).
Material conditionals raise well-known problems and misrepresent the intended

meaning of most conditional statements in normal language (e.g. Priest 2001). The
statement �if it�s the 15th century then people drive cars� is true as a material
conditional because it�s not the 15th century (and also because people drive cars).
This clash between our intuition and the material conditional is due to the fact that,
usually, �if a then b�does not say something about the actual truth values of a and b,
but something about b�s truth value in other (perhaps non-actual) worlds in which a
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holds, e.g. worlds where it�s the 15th century. The statement �if it�s the 15th century
then people drive cars�does not mean �either it�s not the 15th century or we drive
cars�(true), but it means �in a world of the 15th century, people drive cars�(false).

Also in judgment aggregation, the relevant conditionals are usually not material,
as argued in Dietrich (2005). For instance, the conditional

a! b : �if the birth rate is too low then more immigration is needed�
does not have the material meaning, as it does not mean
:a _ b : �the birth rate is not too low or more immigration is needed�.
Rather it means �in the case (the world(s)) where the birth rate is too low, more

immigration is needed�. Under the latter reading, it is perfectly consistent to reject
a without accepting a! b; but if ! were mat! then :a would entail a! b by (mat!).

To represent conditionals more adequately, I now de�ne two logics (L;�) based on
possible-worlds semantics, which goes back to Kripke (1963) and others and is now
widely used; for reference, e.g. Priest (2001).

In the �rst logic, S5, the conditional �if p then q� is declared true if q holds in
every world in which p holds. To express �in every world�, the language L will contain
a necessity operator �, in terms of which conditionals will be de�ned.

The modal logic S5. The language L is the (smallest) set such that
� L contains each given atomic proposition a; b; :::, and
� if L contains p and q, it also contains :p, (p ^ q), and �p (�necessarily p�).
Like in classical propositional logic, any truth-functional operators (_, mat!, mat$ etc.)

can be de�ned using :; ^. Other non-truth-functional operators like the strict (or
strong) conditional str! and biconditional str$ can be de�ned using �: for any p; q 2 L,
p

str! q stands for �(p mat! q), or equivalently for �(:p _ q) (�necessarily, not-p or q�);
and p str$ q stands for (p str! q) ^ (q str! p).

While for classical propositional logic an interpretation is given by a single truth
function, an S5-interpretation is a pair (W; (vw)w2W ), where:
� W is a non-empty set of objects called (possible) worlds;
� (vw)w2W is a family of (�truth�) functions vw : L ! fT; Fg, assigning to each
proposition p 2 L its truth value vw(p) in world w 2W , such that, for all worlds
w 2 W and propositions p; q 2 L, the truth function v = vw satis�es (:), (^),
and

(�) v(�p) = T if and only if vw0(p) = T for all world w0 2W .
From (�) we can immediately deduce the truth conditions for str! and str$:
( str!) vw(p

str! q) = T if and only if vw0(q) = T for all worlds w0 2 W with
vw0(p) = T ;

( str$) vw(p
str$ q) = T if and only if vw0(p) = vw0(q) for all worlds w0 2W .

So the strict conditionals p str! q holds in a world just in case q holds in every
world in which p holds. The truth value of p str! q depends not just on the actual
world: the operator str! is not truth-functional. Interpretations (W; (vw)w2W ) di¤er
in what worlds are considered possible, and in what propositions are true in them.
Presumably, in our immigration example the set of possible worlds W include worlds
with a bright economic future, in which b is true, and worlds where just the opposite
holds. As another example, if the only relevant aspect is the season, we may put
W = fSp; Su;Au;Wig, where the atomic proposition �European trees are loosing
their leaves�is true in the world Au and false in all world w 2WnfAug.
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By de�nition, a set A � L entails a proposition p 2 L (A � p) if for every S5-
interpretation (W; (vw)w2W ) and every world w 2 W with vw(q) = T for all q 2 A
we have vw(p) = T . Informally, A entails p if, whenever each q 2 A is true, p is true.
The strict conditional still satis�es modus ponens as a; a str! b � b. But it avoids the
two paradoxes of the material conditional as :a 2 a str! b and b 2 a str! b. This is the
main advantage of str! over mat!. Note also that A is consistent (i.e. entails no pair
p;:p) if and only if some world of some S5-interpretation makes all q 2 A true.

In judgment aggregation, it makes a considerable di¤erence whether strict or
material conditionals are used. To illustrate this, consider again our immigration
example with agenda X = fa;:a; a ! b;:(a ! b); b;:bg, and let us see which
judgment sets A � X are declared fully rational (i.e. consistent and complete) if
!=mat! and if != str!.
� If!=mat!, the only fully rational judgment sets are fa; a! b; bg; f:a; a! b; bg;
f:a; a! b;:bg; fa;:(a! b);:bg.

� If!= str!, there are three additional fully rational judgment sets, namely fa;:(a
! b); bg; f:a;:(a ! b); bg; f:a;:(a ! b);:bg. A negated strict conditional
:(a! b) is consistent with any truth values of a and b!

Nevertheless, strict conditionals �historically the �rst attempt to formalise non-
material conditionals � face other, more subtle, problems, which suggest that they
do still not fully faithfully represent the intended meaning of many conditional state-
ments. Most problems of strict conditionals remain if we move to more re�ned modal
logics than S5, i.e. to modal logics of type K� discussed later. Often, only subjunct-
ive conditionals are considered fully adequate. For, �if a then b�often means not that
b holds in every world where a holds (strict conditional), but that b holds in worlds
similar to the actual world except that a is true (subjunctive conditional). Thus the
meaning of �if a then b�is often: if a were true �if the actual world were modi�ed so
that a becomes true ceteris paribus �then b would be true. One might even interpret
�if a then b�as �in the closest world(s) in which a holds, b holds�.

Subjunctive conditionals were formalised by Stalnaker (1968) and D. Lewis (1973)
using conditional logics and have become well-established. Let me introduce C+, a
standard version of conditional logic.

The conditional logic C+. The language L is the (smallest) set such that
� L contains each given atomic proposition a; b; :::, and
� if L contains p and q, then L also contains :p, (p^ q), and p sub! q (�if p then q�
in the subjunctive sense of �if p were true then q would be true�).

Again, any truth-functional operators (_, mat!, mat$ etc.) can be de�ned in terms
of :; ^. Moreover, the subjunctive biconditional sub$ is de�nable using sub!: for any
p; q 2 L, p sub$ q stands for (p sub! q) ^ (q sub! p).

To de�ne �, �rst let a C+-interpretation be a triple (W; (Rp)p2L; (vw)w2W ), where:
� W is again a non-empty set of (possible) worlds;
� (Rp)p2L is a family of binary relation on W (wRpw0 means �world w0 is similar
to world w, and p is true in w0�), such that, for any w;w0 2W and p 2 L,
� if wRpw0 then vw0(p) = T (an obvious requirement given what wRpw0

means), and
� if vw(p) = T then wRpw (since w is similar to itself);
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� (vw)w2W is a family of (�truth�) functions vw : L ! fT; Fg, assigning to each
proposition p 2 L a truth value vw(p) in world w 2W , such that, for all w 2W
and p; q 2 L, the truth function v = vw satis�es (:), (^), and

(sub!) vw(p
sub! q) = T if and only if vw0(q) = T for all worlds w0 2W with wRpw0.

So p sub! q is true in world w just in case q is true in every world w0 similar to w and
with true p. This captures the above intuition for subjunctive as opposed to strict
conditionals. For instance, �if the G8 countries were not industrialised then the ozone
layer would be in good order� is (probably) true as a subjunctive conditional: were
the G8 countries not industrialised ceteris paribus, much of present CO2 emissions
wouldn�t occur. But it is false as a strict conditional: think of worlds in which the
G8 countries are not industrialised but many other countries are.

Entailment is de�ned as for S5, but now relative to C+-interpretations: a set
A � L entails a proposition p 2 L (A � p) just in case for every C+-interpretation
and every world w if each q 2 A is true in w then p is true in w. Again, this implies
that A is consistent if and only if for some world of some C+-interpretation each
q 2 A is true.

Like the strict conditional str! in S5, sub! satis�es modus ponens (as p; p sub! q � q)
but is not vulnerable to the paradoxes of the material conditional (as :a 2 a sub! b and
b 2 a sub! b). In judgment aggregation, modelling ! as str! or as sub! often makes little
di¤erence in the sense that we obtain the same fully rational judgment sets for many
agendas, including for the above agenda X = fa;:a; a ! b;:(a ! b); b;:bg. But
sometimes di¤erences arise; for instance, str! is transitive (i.e. p str! q; q

str! r � p str! r

for all p; q; r 2 L) but sub! isn�t.

3.3 Decision problems with modal statements: representable in modal
logics

Modal operators are used to represent phrases in front of propositions such as �it
is desirable that�, �it is ethically required that�, �it is in our interest that�, �it is
feasible that�, �it is probable that�, �it is known that�etc. A modal operator in front
of p does not say that p is true or false, but that p is desirable, or morally required,
etc. There are various ways in which modal operators can be relevant in judgment
aggregation. Let me give two examples.

Non-separable decisions on acts. Many decision problems consist in deciding
on collective acts. Consider act-describing propositions, such as �income taxes are
raised�, �indirect taxes are raised�, �the budget de�cit is reduced�. Some acts may be
non-separable from others: whether the former should be taken depends on whether
the latter are taken. To represent this, one may use a modal operator S standing
for �it is desirable that�, and consider an agenda X that contains the following two
types of propositions (and their negations):
� propositions of the form S(p), where p is a (perhaps negated) act-describing
proposition; S(p) could be �it is desirable that income taxes are raised�, in
short �income taxes should be raised�;

� conditional statements of the form p ! S(q), where p and q are (perhaps
negated) act-describing propositions; p ! S(q) could be �if the budget de�cit
is not reduced, then income taxes should not be raised�.
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A judgment set A � X then states that certain acts should (not) be taken,
unconditionally or conditionally on other acts being (not) taken. Note that this
approach di¤ers from the way preference aggregation handles non-separability.

Probabilistic statements. In a private communication, Ruwin Gekker drew my at-
tention towards the importance of probabilistic statements of the form �it is probable
that p�(in short: �probably p�), where p is a factual proposition such as �carbon di-
oxide emissions are a cause of global warming�or �global warming will continue over
the next 10 years�. It may be interesting to use a modal operator P for �probably�
and to consider an agenda X containing:
� propositions of the form P (p), where p is a factual proposition; P (p) could be
�Probably carbon dioxide emissions are a cause of global warming�;

� conditional statements of the form p ! P (q), where p and q are factual pro-
positions; p! P (q) could be �if carbon dioxide emissions are a cause of global
warming then probably global warming will continue over the next 10 years�.

A judgment set A � X expresses probabilistic beliefs about the world. These
probabilistic beliefs are less exact than those expressed in a probability function (how
probable is �probably�?); however, it is more realistic that a person can submit a
judgment set A � X than a full probability function.

Each type of modal operator requires its own semantics, and hence its own lo-
gic (L;�). For instance, it may be desirable that the above operator S satis�es
S(p); S(q) � S(p ^ q) for all p; q 2 L (if p and q are desirable, so is p ^ q), but
surely not that the above operator P satis�es P (p); P (q) � P (p ^ q) for all p; q 2 L
(if p and q are each probable, p ^ q need not be probable). While there are many
modal logics, most of them satisfy the conditions L1-L5 of the present model of judg-
ment aggregation. Many of these logics share a common feature: they are based on
possible-worlds semantics, like the formalisation of conditional statements discussed
in Section 3.2. The reason is that a modal operator in front of a proposition p can
often be interpreted as stating that p holds in every (or in some) possible world, under
an appropriate notion of possibility: �it is desirable that p�means �p holds in every
world respecting our desires�; �it is ethically required that p�means �p holds in every
(morally) permissible world�; �it is in our interest that p�means �p holds in every
world respecting our interests�, etc. But there are also exceptions where possible
worlds semantics are inappropriate, notably regarding the operator �it is probable
that�; see for instance Gekker 2003.

Some decision problems require the use of a multi-modal logic (which contains
more than one modal operator), or a logic with a modal operator and a subjunctive
conditional !, as might be the case in the two examples above.19

In a modal logic (L;�) with a (single) modal operator �, L is de�ned just like in the
modal logic S5 (see Section 3.2), and �p means that p holds necessarily according to
some type of necessity such as those mentioned above. If the logic is possible-world
based, holding necessarily means holding in every possible world, where a world is
possible if it respects desires, or interests, or morality, or budget constraints, or is
19The adequate representation of conditional commitments, like those in our �rst example, is a

controversial issue in deontic logic (e.g. Hintikka 1971 and Wagner Decew 1981). In particular, it
is controversial whether and when p ! S(q) or S(p ! q) is preferrable to represent a conditional
commitment. It is often argued that �!�should not be a material conditional.
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compatible with our information, etc. To the necessity operator � corresponds a
possibility operator �, which is de�nable in terms of �: for any p 2 L, �p (�it is
possible that p�) stands for :�:p (�it is not necessary false that p�). The meaning of
� depends on that of �: if � represents the morally necessary � represents the morally
permissible, if � represents the �nancially necessary, � represents the a¤ordable, etc.

How should entailment � on L be de�ned? Surely, the simplest possible-worlds
semantics, appropriate only for some modal operators, is that of the logic S5 de�ned
in Section 3.2. In S5 we for instance have, for each p 2 L, �p � p (since if p is true
in every world, it is true in the actual world) and �p � �p (since if p is true in every
world it is true in some world).

But S5 is far from representing all forms of modality adequately. If � stands
for �it is desirable that�, the entailment �p � p is problematic: �it is desirable that
all humans live in harmony� does not entail �all humans live in harmony�. If �
represents moral necessity, the entailment �p � p is also problematic : being ethically
required does not entail being true. What causes the problem is that S5 interprets
�p as meaning that p holds in all worlds, rather than in certain worlds.

This suggests that one needs a notion of relative possibility: relative to a given
world w, only certain worlds should be possible. Writing wRw0 if w0 is a possible
world relative to world w, we can then de�ne �p to hold in a world w in case p holds
in every world w0 with wRw0, i.e. in every possible world if we are in w. R establishes
a binary relation on W .

Note that this move resembles the move done in the last subsection to construct
the conditional logic C+. There we needed not one relation R of �relative possibility�,
but for each p 2 L a relation Rp of �similarity subject to p being true�. While the
relations Rp was used to de�ne subjunctive conditionals, which overcome problems
of the strict conditional p str! q (=�(p mat! q)), the present relation R will be used to
�x problems that modal statements �p have in S5.

Of course, not any binary relation R onW can represent relative possibility: R has
to satisfy certain conditions, where these conditions crucially depend on the type of
modality to be represented. Often a subset of the following conditions is appropriate:
re�exivity (wRw for all w 2W ), symmetry (if wRw0 then w0Rw, for all w;w0 2W ),
transitivity (if wRw0 and w0Rw00 then wRw00, for all w;w0; w00 2W ), and extensibility
(for all w 2 W there is a w0 2 W such that wRw0). For each set � of conditions on
R, a corresponding modal logic can be de�ned; I denote it K� after Kripke (1963),
one of the founders of possible-words semantics. As the reader will notice, S5 is the
special case of K� in which � contains a single (very strong) condition on R: every
world accesses every world.

The modal logic K�. The language L is de�ned as in S5. Again, using ^ and
: we can de�ne all truth-functional operators (_, mat!, mat$, etc.), and, also using �, we
can de�ne non-truth-functional operators ( str!, str$, �, etc.).

To de�ne entailment �, let aK�-interpretation be a triple (W;R; (vw)w2W ), where
� W is a non-empty set of (possible) worlds;
� R is a binary relation on W satisfying the conditions in �; R is the relative
possibility relation or accessibility relation, and wRpw0 means �in world w, w0

is possible�;
� (vw)w2W is a family of (�truth�) functions vw : L ! fT; Fg, assigning to each
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proposition p 2 L its truth value vw(p) in world w 2 W , such that, for any
w 2W and p; q 2 L, the truth function v = vw satis�es (:), (^), and

(�) v(�p) = T if and only if vw0(p) = T for all worlds w0 2W with wRw0.
By (�) and the de�nition of �, the truth condition for possibility is:
(�) vw(�p) = T if and only if vw0(p) = T for some world w0 2W with wRw0.
So �p (�p) is true if p is true in each (some) world that is possible relative to the

actual world.
By de�nition, a set A � L entails a proposition p 2 L (A � p) if, for every world

w of any K�-interpretation, if each q 2 A is true in w then p is true in w. Again,
it follows that A is consistent if and only if some world of some K�-interpretation
makes all q 2 A true.

Di¤erent sets � of conditions on the relative possibility relation R generate dif-
ferent properties of entailment �. For instance, the characteristic property of the
re�exivity condition is that �p � p for all p 2 L (since if p holds in every possible
world then, as the actual world is possible, p holds in the actual world). The char-
acteristic property of the extensibility condition is that �p � �p, i.e. if p is necessary
then p is possible (since if p holds in all possible worlds then, as there exists a possible
world, it holds in some possible world).

It is debatable which set of conditions � is appropriate for the di¤erent modal
operators. If � represents �it is known that�(i.e. �the available information implies
that�), � should contain the re�exivity condition since we want �p � p (if p is known
to be true then p must be true). If � represents desirability or moral necessity then
� should not contain the re�exivity condition since otherwise we obtain �p � p, a
problematic entailment as noted above. It is often argued (see Priest 2001) that in
order to represent moral necessity � should consist only of the extensibility condition
(which implies �p � �p).

3.4 Preference aggregation problems: representable in a predicate
logic

Like in preference aggregation, suppose a group has to establish a collective preference
relation � over a set of alternatives C = fc1; c2; :::; ckg (k � 2) based on individual
preference relations. I now present two ways to model this decision problem as an
instance of judgment aggregation in general logics. Following List and Pettit (2004),
I will represent preferences and rationality conditions as propositions of predicate
calculus.

We consider the predicate language given by the set of constants C = fc1; :::; ckg,
the set of variables V = fv1; v2; :::g, the two binary predicates R (�is at least as good
as�) and = (�is equal to�), and the standard operators : (�not�), ^ (�and�), and
8 (�for all�). Formally, the atomic propositions are the expressions xRy and x = y,
where x; y 2 C [V , and the set of all propositions, L, is de�ned as the (smallest) set
such that
� L contains each atomic proposition, and
� if L contains p and q, it also contains :p, (p ^ q), and (8v)p for each variable
v 2 V (let _ and ! be disjunction and material conditional, de�ned in terms
of ^;:).

Then:
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(i) Each preference relation � on C can be represented as a set of propositions

A� := fcRc0 : c; c0 2 C and c � c0g [ f:cRc0 : c; c0 2 C and c � c0g � L;

re�ecting all pairwise rankings under �.
(ii) Any rationality condition on preferences can be expressed as a proposition

in L; for instance, the completeness condition is 8v18v2(v1Rv2 _ v2Rv1), and the
transitivity condition is 8v18v28v3((v1Rv2 ^ v2Rv3) ! v1Rv3). Let R � L be a set,
interpreted as the set of desirable rationality conditions, e.g. those of a weak order,
or those of a linear order, or those of an acyclic and re�exive partial order.

(iii) The exclusiveness of the options can be expressed by the proposition ^1�j<j0�k
:(cj = cj0) (stating that c1; :::; ck are pairwise distinct), and the exhaustiveness of
the options can be expressed by the proposition 8v1(_1�j�kv1 = cj) (stating that
c1; :::; ck are the only options); here, �^1�j<j0�k�and �_1�j�k�are shorthands, e.g.
�_1�j�kv1 = cj�means v1 = c1 _ ::: _ v1 = ck (where _ is de�ned in terms of ^ and
:, as done earlier). Let E be the set of these two conditions.

Exogenous rationality conditions. Assume �rst that, as in standard preference
aggregation, the rationality conditions in R are exogenously imposed, i.e. not sub-
ject to a decision. Then the agenda should be de�ned as the set X := XC :=
fcRc0;:cRc0 : c; c0 2 Cg. To make the rationality conditions and the exclusiveness
and exhaustiveness conditions true by de�nition, let me turn them into axioms of the
logic. Speci�cally, I consider the set of axioms A = R[E , containing the rationality,
exclusiveness and exhaustiveness conditions, and I de�ne a preference logic by the
language L together with the entailment relation given by:

A � p if and only if A [ A entails p in the standard
sense of predicate logic.20

(1)

In this logic, a set A � L is consistent (i.e. entails no pair p;:p 2 L) if and only if A[A
is consistent in the standard sense of predicate logic. By consequence, the preference-
theoretic notion of rationality translates into the logical notion of consistency :
� A preference relation � on C satis�es all rationality conditions in R if and
only if the corresponding judgment set A� (de�ned above) is consistent.

Hence, the preference aggregation problem of �nding rational collective prefer-
ences becomes the judgment aggregation problem of �nding consistent collective judg-
ments.

Endogenous rationality conditions. Judgment aggregation also allows one to study
a new decision problem, in which the (amount and type of) collective rationality is
itself subject to a decision. To this end, let us augment the agenda by the rationality
conditions, i.e. let us consider the agenda X := XC;R = fcRc0;:cRc0 : c; c0 2
Cg [ fr;:r : r 2 Rg. Rather than building the rationality conditions as axioms into
20Entailment in predicate logic is de�ned in most standard logic textbooks, e.g. Mendelssohn

(1979). I adopt here a frequent convention on the notion of an �interpretation� for predicate logics:
the equality symbol = (if present in the language) is by de�nition interpreted as the equality relation
(rather than as any arbitrary binary relation). This implies that, for any constant symbols c; c0,
c = c0 is true under an interpretation if and only if the interpretation maps c and c0 to the same
object.
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the logic, consider the smaller set of axioms A := E , containing only the exclusiveness
and exhaustiveness conditions, and let the logic be the language L endowed with the
entailment relation � de�ned by (1) using the new set of axioms A.21

3.5 Exogenous constraints: representable by axioms

Decision tasks that must obey certain (exogenous) constraints can often be repres-
ented by building the constraints as axioms into the logic; an example was given in
the previous subsection, where constraints like �transitivity�were built into the logic.
This move turns the respectance of constraints into a matter of logical consistency
of collective judgment sets. Formally, if both the propositions under decision and
the constraints are expressible in some logic (L; ~�) (e.g. the conditional logic C+, a
version of modal logic K�, or some predicate logic), then we can use a modi�ed logic
(L;�) with entailment � thus de�ned: for any A � L and p 2 L, A � p :, A [ A~�p,
where A � L is the set of constraints.

Some constraints in A may simply be analytic truths, such as the proposition
3 > 2 and the proposition (^k2Kpk) ! p, where K is the set of items of a budget,
p is �total spending increases�and pk is �spending on item k increases�. But A will
often also contain contingent constraints, which the group faces due to the world
in which it lives; examples are (propositions expressing) legal constraints or budget
constraints. For instance, the decision problem faced by the court in the classical
doctrinal paradox (Kornhauser and Sager 1986) can be modelled as follows. The
agenda is X = fa;:a; b;:b; c;:cg, where a is �the defendant has broken contract x�,
b is �contract x is valid�and c is �the defendant is guilty�. Given that legal doctrine
declares c to hold if and only if a and b hold, the agenda belongs to the logic (L;�)
obtained by building into, say, the conditional logic C+ the axiom c

sub$ (a ^ b). That
is, L is the language of C+, and A � p if and only if A [ fc sub$ (a ^ b)g entails p in
C+. In this logic, the judgment set fa; b;:cg is inconsistent, as desired. If, however,
the proposition c sub$ (a ^ b) were not exogenously imposed but subject to a decision,
the agenda would also include c sub$ (a^ b) and :(c sub$ (a^ b)), and the logic would be
simply C+.

3.6 Decision problems with vague propositions: representable in
fuzzy logics

Arguably, in some decision problems propositions are �vague� and hence can have
truth values between �true�and �false�. This might be so for �the economy is in good
shape�, as �in good shape� is not precisely de�ned. To account for vagueness, one
might use a fuzzy logic (L;�). Simple fuzzy logics (L;�) with only truth-functional
21There is an additional subtlety. Intuitively, it is perfectly consistent to reject, say, the complete-

ness condition while holding a complete preference relation � by pure coincidence. Indeed, rejecting
the completeness condition is not claiming that preferences must be incomplete, but that they may be
incomplete. However, assume a person holds a complete preference relation �. His or her judgment
set A � XC;R is a superset of A�, the set of ranking judgments corresponding to �. As one easily
checks, A� entails the completeness condition (i.e. A� � 8v18v2(v1Rv2 _ v2Rv1)), and hence so does
A. So (if A is deductively closed) A must contain the completeness condition! Similar remarks apply
to all rationality conditions. To make it possible to reject rationality conditions even if they happen
to be satis�ed by the actual preferences �, one could add a modal necessity operator � in front of
each rationality condition �which requires using a modal predicate logic instead.
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connectives can be obtained by �fuzzifying�classical propositional logic. Speci�cally,
let the language L be the same as in classical propositional logic with connectives
:;^ (see Section 3.1), but let us rede�ne interpretations (hence �). If we use a
whole interval [0; 1] of truth values (the extremes 0 and 1 correspond to F and T in
binary logics), a (fuzzy) interpretation of L is a function v : L ! [0; 1] (v(p) = �
means p is true to the degree �) such that, for all p; q 2 L, v(:p) = 1 � v(p) and
v(p^q) = minfv(p); v(q)g. Based on this notion of interpretations, there are di¤erent
ways to de�ne entailment � (e.g. Priest 2001, ch. 11). Importantly, some may violate
L4 (be paraconsistent), or even violate L3. As long as L1-L3 hold, standard judgment
aggregation results apply. This is so for the following de�nition of �. Fix a threshold
� 2 (1=2; 1] for �su¢ ciently true�, and let A � p mean that, for all interpretations v;
if v(q) � � for all q 2 A then v(p) � �.

4 A toolkit for working with general logics

Having considered many particular logics representing particular decision problems,
we are back to full generality. I now state what I take to be the basic technical tools
to easily derive judgment aggregation results in a general logic (L;�). Many past
results essentially use these tools, and so they continue to hold in general logics.

To give the reader a feeling, suppose we want to generalise the introductory ex-
ample where propositionwise majority voting generates the inconsistent judgment set
Y = fa; a ! b;:bg. Note that Y is minimal inconsistent: its proper subsets are
consistent. Let us construct a similar inconsistency for any agenda X � L in a lo-
gic (L;�) satisfying L1-L3 where X has again a minimal inconsistent subset Y with
jY j � 3. Note that Y becomes consistent whenever one member is removed. So we
can let each of the three equally-sized camps accept all but one proposition in Y ,
where the non-accepted proposition is a di¤erent one for each camp. By L3 (more
precisely by Proposition 2(e)), we can extend a camp�s accepted subset B � Y to
a complete and consistent judgment set C � X of that camp. The resulting pro�le
(A1; :::; An) contains fully rational judgment sets, and majority voting generates a
judgment set A � Y . As Y is inconsistent, so is A by L2 (or Proposition 2(b)).

In Section 4 1, I give tools valid under L1-L3, and I argue that L1-L3 is an
appropriate framework if the only rationality conditions of interest are consistency
and completeness. In Section 4.2, I give additional tools under L1-L4, and I argue that
L1-L4 may be appropriate to analyse the rationality condition of deductive closure.

4.1 Judgment aggregation in L1-L3: rationality as completeness and
consistency

Suppose that the only rationality criteria of interest are completeness and consistency
(and weak consistency), whose conjunction de�nes full rationality. That is, suppose
we only ask whether or not the collective judgment set is consistent and whether or
not it is complete; we do not ask whether it is deductive closed. (Note that if it is
both consistent and complete, i.e. fully rational, then it is automatically deductively
closed; see Proposition 1.) Under this premise, the results that one may want to
derive involve no rationality condition except from consistency and/or completeness;
examples are results on the (im)possibility of aggregation with fully rational outcomes,
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and characterisations of aggregation rules with consistent outcomes. Such results can
usually be based on a general logic of type L1-L3 (plus perhaps L5); L4 plays no role
and need not be assumed.

Let me justify this claim. Such results do not appeal directly to the entailment
relation �, but only to the consistency notion induced by �: they depend only on prop-
erties of the system I (� P(L)) of inconsistent sets, regardless of which entailment
relation � has induced the system I. But what sort of properties of inconsistency
(i.e. of I) do such results depend on? The properties listed in Proposition 2 turn out
to be all that is needed to prove many such results, including all results of Section 5,
Nehring and Puppe�s (2004) characterisation of consistent voting by committees, Di-
etrich and List�s (2004b) liberal paradox for judgment aggregation, and Dietrich and
List�s (2005) characterisation of consistent quota rules. So, as Proposition 2 requires
only L1-L3 (plus perhaps L5), all of these results are valid in general logics of type
L1-L3 (plus perhaps L5 if the agenda X is in�nite). Condition L4 would not have
added anything.22 L1-L3 are also the conditions under which inconsistencies can be
represented using a Venn diagram.23 Note that if entailment is of no independent
interest then, although less natural in logic, one could reformulate the general logics
model such that inconsistency is a primitive notion. A logic would then be de�ned
not as a pair (L;�) but as a pair (L; I), thereby loosing the notion of entailment and
hence of deductive closure.24 Formally this approach is closely related to Wilson�s
(1975) aggregation model.

Proposition 2 (properties of inconsistency) Assume L1-L3. For any A � L and
p 2 L,

(a) if p;:p 2 A then A is inconsistent;
(b) if A is inconsistent then so is any superset of A;
(c) if A is consistent then so is any subset of A;
(d) if A is consistent then A [ fpg or A [ f:pg is consistent;
(e) for every consistent judgment set B � X, there is a fully rational judgment

set C � X with B � C;
(f) A is consistent if and only if A� is consistent, for any set A� arising from A

by replacing elements q 2 A by one or more q-variants;25
22L1-L4 imply no properties of the system of inconsistent sets I other than those already implied

by L1-L3. That is, the set of conditions L1-L4 on � and the set of conditions L1-L3 on � imply
exactly the same properties of I: they each imply that I satis�es the conditions I1-I3 de�ned in
footnote 24.
23 Identify the worlds (points) of the Venn diagram with the consistent sets A � L containing a

member of each pair p;:p 2 L, and identify each p 2 L with the set of worlds containing p. Then,
as desired for a Venn diagram, a set A � L is consistent if and only if the intersection of the sets of
worlds corresponding to the propositions in A is non-empty. In general, a Venn diagram can fully
represent the logic�s inconsistencies (i.e. I) but not its entailments (i.e. �).
24One then needs to impose the following conditions on (L; I): (I1) for each p 2 L; we have

fp;:pg 2 I; (I2) for all A;B � L, if A 2 I and A � B then B 2 I; (I3) ; =2 I, and every A � L with
A =2 I has a superset B � L with B =2 I containing a member of each pair p;:p 2 L. The conditions
I1-I3 on (L;I) are equivalent to the conditions L1-L3 on (L;�): for any language L, a system I
(� P(L)) satis�es I1-I3 if and only if it is the set of inconsistent sets generated by some entailment
relation � satisfying L1-L3 (if we even require L1-L4, � is unique, and given by [A � p if and only if
A[f:pg 2 I]). While inconsistency can be de�ned in terms of entailment, the converse is impossible
(unless one assumes L4): starting from (L; I) satisfying I1-I3, one cannot de�ne � (without assuming
L4), and hence deductive closure is unde�nable.
25q� is a q-variant (and q a q�-variant) if one of q and q� is a k-fold negation of the other for some
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(g) every �nite inconsistent set has a minimal inconsistent subset;
(h) given L5, every inconsistent set has a �nite minimal inconsistent subset.

Note that by part (f) any double-negated proposition ::p is essentially identical
to p with respect to inconsistencies: both stand in exactly the same inconsistency
relations with other propositions.

Proof. (a) If p;:p 2 A then by L1-L2 A � p and A � :p; so A is inconsistent.
(b), (c): These claims follow from L2.
(d) If A is consistent, then by L3 A has a consistent superset C � L containing

a member of each pair p;:p 2 L. As C is a superset of either A [ fpg or A [ f:pg,
either of the latter sets is consistent by (c).

(e) Let B � X be a consistent judgment set. By L3 B has a consistent superset
D � L containing a member of each pair p;:p 2 L. So the judgment set C := D\X
is complete and by (c) consistent, and it satis�es B � C.

(f) Let A� be as speci�ed. I show that any set S � L is consistent if and only
if the set eS := fq 2 L : q is a variant of some r 2 Sg is consistent. Using this, the
claim is equivalent to the claim that eA is consistent if and only if fA� is, which holds
by eA = fA�.

Consider any S � L. If eS is consistent, then so is S by S � eS and (c). Now
let S be consistent. Then, by L3, S has a consistent superset T � L containing a
member of each pair q;:q 2 L. I show that eS � T; which by (c) implies that eS is
consistent, as desired. To show eS � T , I have to prove that, for any q 2 S, T contains
all q-variants, i.e. all q� 2 L such that for some even k 2 f0; 2; 4; :::g (i) q� is the
k-fold negation of q or q is the k-fold negation of q�. I only show case (i), as case (ii)
can be shown analogously. Of course q 2 B. By q 2 B, we have :q =2 B by (a), and
hence ::q 2 B since B contains one of :q;::q. Repeating this argument, one �nds
::::q 2 B, then ::::::q 2 B, etc., as claimed.

(g) Let B � L be any �nite inconsistent set. Among all inconsistent subsets of B;
choose a minimal one (with respect to inclusion); there exists one since B is �nite.
This set is minimal inconsistent.

(h) Any inconsistent set has by L5 a �nite inconsistent subset, and hence by (g)
a �nite minimal inconsistent subset. �

4.2 Judgment aggregation in L1-L4: analysing deductive closure

In addition to completeness and consistency, it may be interesting to analyse the
rationality condition of deductive closure; this analysis may require the additional as-
sumption of L4 (non-paraconsistency). One motivation for studying deductive closure
can arise from the various impossibility theorems. Let me explain how. These the-
orems tell us that fully rational aggregation is often unrealistic. But if collective
judgments cannot be fully rational, what weaker form of rationality should we aim
at? There are (at least) two approaches:

� Relaxing completeness, but keeping consistency and deductive closure. Here,
the collective abstains from a decision on certain pairs p;:p, but otherwise forms
judgments that are not only consistent, but also deductively closed, i.e. whenever

even number k 2 f0; 2; 4; :::g. For instance, q and ::q are q-variants.
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a proposition p 2 X follows from the collectively accepted propositions, p is also
accepted. It is then interesting to analyse which aggregation rules generate consistent
and deductively closed judgment sets. As seen in Proposition 3 below, some tools to
analyse deductive closure hold for all logics of type L1-L3, but many others require
a logic of type L1-L4. Dietrich and List�s (2005) characterisation of consistent and
deductively closed quota rules holds in logics of type L1-L4 (plus L5 if the agenda X
is in�nite).

� Relaxing consistency to weak consistency, but keeping completeness and deduct-
ive closure. Here, the collective accepts exactly one member of each pair p;:p, in a
deductively closed but perhaps not consistent way. This form of restricted rationality
exists only in logics violating L4, because, under L1-L4, by keeping completeness,
weak consistency and deductive closure one actually keeps consistency (see Proposi-
tion 1). But the escape route may be an interesting option in logics violating L4, i.e.
in paraconsistent logics with various degrees of consistency. In some real situations,
relaxing consistency may even be the only feasible collective rationality relaxation,
because completeness cannot be given up when a decision on each pair p;:p 2 X is
strictly needed. As L4 should not be imposed, the tools (d)-(f) in Proposition 3 are
unavailable.

Proposition 3 (properties of entailment) Assume L1-L3. For any A � L and p 2 L,
(a) if p 2 A then A � p;
(b) if A � p then A[f:pg is inconsistent; in particular, ; entails only tautologies;
(c) if A � p and A is consistent then A [ fpg is consistent;
(d) given L4, each inconsistent set entails every proposition;
(e) given L4, A � p if and only if A [ f:pg is inconsistent.
(f) given L4, A � p if and only if A� � p�, for any p-variant p� and any set A�

arising from A by replacing elements q 2 A by one or more q-variants.26

Under L1-L4 the entailment relation � can be retrieved from the inconsistency
notion using (e); see also footnote 24. By part (f), under L1-L4 double-negations
�::�have no e¤ect on any entailments.

Proof. (a) follows from L1 and L2.
(b) If A � p, then A[f:pg is inconsistent since A[f:pg � p by L2 and A[f:pg �

:p by (a).
(c) Assume A � p where A is consistent. By L3, A[fpg or A[f:pg is consistent.

As A [ f:pg is inconsistent by (b), A [ fpg is consistent.
(d) For any inconsistent set A � L and any p 2 L, by L2 A[f:pg is inconsistent,

and hence by L4 A � p.
(e) One direction follows from (b), the other one from L4.
(f) Let A� and p� be as speci�ed. By (e) and L4, A � p if and only if A [ f:pg

is inconsistent, and A� � p� if and only if A� [ f:p�g is inconsistent. So the claim
follows from Proposition 2(f). �

With Propositions 2 and 3 in place, I can now prove Proposition 1 on the relations
between the various rationality conditions on judgment sets.

26 see footnote 25
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Proof of Proposition 1. Assume L1-L3 and let A � X be any judgment set.
(a) If A is consistent then it is weakly consistent by Proposition 2(c). Now as-

sume A is deductively closed. Of course, consistency still implies weak consistency.
Conversely, suppose A is not consistent. So A entails each p 2 X by Proposition 3(d).
Hence, by deductive closure, A = X. So A is not weakly consistent.

(b) First, let A � X be fully rational. Then A is complete, and Proposition
2(c) weakly consistent. To prove deductive closure, consider any p 2 X such that
A � p. By A � p, the set A [ f:pg is inconsistent by Proposition 3(b). First assume
p is not a negated proposition; then p;:p 2 X by the de�nition of agendas. Since
A is consistent, A 6= A [ f:pg, and hence :p =2 A, which implies p 2 A by A�s
completeness. Now assume p is a negated proposition, say p = :q; then q;:q 2 X by
the de�nition of agendas. Since A [ f:pg = A [ f::qg is inconsistent, so is A [ fqg
by Proposition 2(f). So, as A is consistent, A 6= A [ fqg, and hence q =2 A, which
implies :q = p 2 A by A�s completeness.

Now assume also L4 and let A be complete, weakly consistent and deductively
closed. Assume for contradiction that A is not fully rational. Then, as A is complete,
it is not consistent. So, by (a) and A�s deductive closure, A is not weakly consistent,
contradicting the assumption. �

5 An impossibility result in general logics

Let (L;�) be any logic of type L1-L3. Using the tools of Proposition 2, I now present
an impossibility result that generalises the binary case of Pauly and van Hees�(2004)
impossibility theorem on systematicity, which in turn strengthens List and Pettit�s
(2002) original theorem. Unlike these theorems, the present result captures the stand-
ard judgment aggregation examples under an adequate representation of conditional
statements. The result also relates to a theorem in the property space framework by
Nehring and Puppe (2002), as explained below.

While in preference aggregation Arrow�s independence of irrelevant alternatives
leads (together with mild other conditions) into dictatorship, the earlier-de�ned in-
dependence condition, introduced in judgment aggregation by Pauly and van Hees
(2004), does so only for quite special agendas. This is demonstrated, for instance, by
theorems by Pauly and van Hees (2004) and Dietrich (2004). But impossibilities for
more general agendas have been obtained by using a more demanding condition:

Systematicity. For any propositions p; p� 2 X and pro�les (A1; : : : ; An); (A�1; : : : ;
A�n) 2 Domain(F ), if [for all individuals i, p 2 Ai if and only if p� 2 A�i ] then
[p 2 F (A1; : : : ; An) if and only if p� 2 F (A�1; : : : ; A�n)].

Taking p = p� yields exactly the independence condition. Systematicity is equi-
valent to the existence of a function M : f0; 1gn ! f0; 1g (the �universal de-
cision method�) such that, for every proposition p 2 X and pro�le (A1; : : : ; An) 2
Domain(F ), F (A1; :::; An)(p) = M(A1(p); :::; An(p)). Here, for any A � X, A(p)
is de�ned as 1 if p 2 A and as 0 if p =2 A. Systematic rules include majority rule
(M(t1; :::; tn) = 1 if and only if t1+ :::+ tn > n=2), unanimity rule (M(t1; :::; tn) = 1 if
and only if t1 = ::: = tn = 1), dictatorial rules (M(t1; :::; tn) = tj , where j is the dic-
tator), inverse dictatorial rules (M(t1; :::; tn) = 1�tj , where j is the inverse dictator),
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oligarchic rules, inverse oligarchic rules, etc. Systematicity di¤ers from independence
in that the decision method M may not depend on p.

To obtain a result in general logics, the agendaX should not be required to contain
particular propositions (formable only in certain logics), but rather to display certain
relations between its propositions. The following agenda conditions turn out to be
appropriate. Let us call a set Y � L minimal inconsistent if it is inconsistent and
every proper subset of Y is consistent; and let us write Y : := f:p : p 2 Y g.

De�nition 2 The agenda X is minimally connected if
(i) X has a minimal inconsistent subset Y such that jY j � 3; and
(ii) X has a minimal inconsistent subset Y such that (Y nZ) [ Z: is consistent

for some set Z � Y of even size.
X is asymmetric if X has a subset S such that one but not the other one of the

sets S; S: is consistent.

I will show that these two agenda conditions are together su¢ cient and essentially
necessary for a general impossibility result to hold. First, however, let me discuss these
conditions and assess their strength. Agendas (decision problems) without any logical
interconnections (except those between propositions and their negations) are of course
neither minimally connected nor asymmetric. Examples are agendas consisting only
of atomic propositions and their negations (say, in classical propositional logic), and
the agendas X = fa;:a; S(a);:S(a)g and X = fa;:a; S(a mat! b);:S(a mat! b); b;:bg
where S means "it is desirable that" an a and b are atomic propositions, say in the
modal logic K� with � containing only the extensibility condition (see Section 3.3).

However, once the agenda displays logical interconnections (beyond the trivial
ones within pairs p;:p 2 X), the agenda will typically be both minimally connected
and asymmetric. In particular, this is so for all standard examples of judgment
aggregation, whether conditional statements are modelled with material conditionals
(problematic) or with strict or subjunctive conditionals (adequate). For instance, an
agenda X containing distinct atomic propositions a; b and their conjunction a^ b (as
in List and Pettit�s 2002 theorem) is minimally connected (take Y = fa; b;:(a ^ b)g
in (i) and (ii), and Z = fa; bg in (ii)) and asymmetric (take S = fa;:(a ^ b)g).
Also an agenda X containing distinct atomic propositions a; b and a (material or
non-material) implication a ! b is minimally connected (take Y = fa; a ! b;:bg
in (i) and (ii), and Z = fa;:bg in (ii)) and asymmetric (take S = fa; a ! bg if !
is a material conditional and S = fa; a ! b;:bg otherwise). Moreover, the agenda
XC for representing a weak preference aggregation problem with set of alternatives
C (see Section 3.4) is also minimally connected and asymmetric, as shown below.

Condition (i) can be regarded as a lower bound on the complexity of (the logical
interconnections in) the decision problem. Denote the size of the largest minimal
inconsistent set Z � X by z, interpreted as a measure of the complexity of the
decision problem X. Condition (i) requires that z � 3. This excludes the case z = 1,
which arises when X contains only tautologies and contradictions, and the case z = 2,
which arises for still quite simple agendas like those consisting of atomic propositions
and their negations (the only minimal inconsistent sets being then pairs fp;:pg � X).

Condition (ii) is harder to interpret, though I will later point out an algebraic
approach. Nevertheless, examples such as the ones above illustrate that (ii) holds for
most agendas with (non-trivial) logical interconnections. In (ii), it is essential that Z
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has even size: allowing jZj = 1 renders the condition always true (because every min-
imal inconsistent set Y becomes consistent by negating exactly one of its members),
and demanding only that jZj � 2 is not su¢ cient to generate the impossibility.27

Finally, asymmetry is also a mild requirement because the opposite � the sym-
metry condition that any S � X is consistent if and only S: is consistent �is obviously
a special case.

Let us call an aggregation rule F regular if it satis�es universal domain and
collective rationality; these conditions are, like dictatorship, de�ned in Section 2.3.

Theorem 1 If the agenda X is minimally connected and asymmetric, every regular
and systematic aggregation rule is dictatorial.

This result, proven further below, obviously generalises List and Pettit�s (2002)
theorem: dictatorship replaces non-anonymity, and on the agenda side we use weaker
interconnections and not necessarily classical propositional logic. Pauly and van Hees�
(2004) Theorem 4 is a di¤erent strengthening of List and Pettit�s theorem: it allows
more than two degrees of acceptance (in addition to using dictatorship like I do in
Theorem 1). In the binary case of exactly two degrees of acceptance (as in the present
paper), their Theorem 4 follows from Theorem 1 because their agenda is minimally
connected and asymmetric.28 Nehring and Puppe (2002) prove a theorem in the
property space model related to Theorem 1, which implies the following result on
logics of type L1-L3: under an even weaker agenda assumption (only part (i) of
minimal connectedness), each regular, systematic and monotone aggregation rule is
dictatorial (in fact, they use independence and neutrality instead of systematicity).29

As an application, consider the agendas introduced in Section 3.4 to represent
a preference aggregation problem with set of options C = fc1; :::; ckg and set of
desirable rationality conditions R. I have distinguished between the agenda XC :=
fcRc0;:cRc0 : c; c0 2 Cg, where the rationality conditions are exogenously given (as
in standard preference aggregation), and the agenda XC;R := fcRc0;:cRc0 : c; c0 2
27The agendaX = fa;:a; b;:b; b mat$ a;:(b mat$ a)g in classical propositional logic violates condition

(ii): check that, whenever we consider a minimal inconsistent set Y � X (e.g. Y = fa; b;:(a mat$ b)g),
Y stays inconsistent if we negate exactly two of its members. However, X would satisfy (ii) if (ii)

allowed that jZj = 3: Y = fa; b;:(a mat$ b)g is minimal inconsistent, but if we negate all three
propositions we obtain the consistent set f:a;:b; a mat$ bg. In Theorem 1 we cannot weaken (ii)
by allowing jZj = 3: if n = 3 and X is the mentioned agenda, the systematic rule with universal
domain that accepts those propositions accepted by an odd number of individuals generates consistent
judgment sets. The reader might check this by hand, or inspect case 3 of the proof of Proposition 2*
in conjunction with Remark 1.
28Consider the binary case of Pauly and van Hees�Theorem 4. This theorem then assumes (just

like List and Pettit�s theorem) that X contains distinct atomic propositions a; b and a^ b;:(a^ b). A
subtlety is that Pauly and van Hees do not like me build into the de�nition of an agenda to be a union
of pairs fp;:pg with p not a negated proposition. So in their Theorem 4 X need not contain :a and
:b. However, to any agenda X in their sense corresponds one in my sense, obtained by adding to
X :p for each p already in X; and then cancelling out double-negations ::. The regular systematic
aggregation rule assumed in their Theorem 4 induces a unique regular systematic aggregation rule
for the corresponding agenda in my sense, and so we can apply Theorem 1 to deduce dictatorship.
29That is, Theorem 1 stays true if we add monotonicity but use (i) as the only agenda condition.

For this modi�ed Theorem 1, Theorem 2 still holds. Analogously, Theorem 1* stays true if we add
monotonicity but use (i*) as the only agenda condition; and, for this modi�ed Theorem 1*, Theorem
2* still holds. All this is clear from the proofs.

25



Cg[ fr;:r : r 2 Rg, where the rationality conditions are endogenous, i.e. also under
decision (the logic (L;�) of each agenda is also de�ned in Section 3.4). For instance,
suppose that R is the set of conditions de�ning a weak order or a linear order:

R = fr1; r2g (weak order) or R = fr1; r2; r3g (linear order), where
r1 is 8v18v2(v1Rv2 _ v2Rv1) (completeness),
r2 is 8v18v28v3((v1Rv2 ^ v2Rv3)! v1Rv3) (transitivity),
r3 is 8v18v2((v1Rv2 ^ v2Rv1)! v1 = v2) (antisymmetry).

(2)

Then, if C contains at least three options, the agenda XC is minimally connected
(take Y = fc1Rc2; c2Rc3;:c1Rc3g in (i) and (ii)) and asymmetric (take S = fc1Rc1g).
Interestingly, the agenda XC;R is minimally connected and asymmetric even for two
options (take Y = f:c1Rc2;:c2Rc1;8v18v2(v1Rv2 _ v2Rv1)g in (i) and(ii), and S =
Y ). So Theorem 1 has the following implication.

Corollary 1 Let the set of rationality conditions R satisfy (2).
(a) (exogenous rationality) If there are jCj � 3 options, any regular and systematic

aggregation rule for the agenda XC is dictatorial.
(b) (endogenous rationality) If there are jCj � 2 options, any regular and system-

atic aggregation rule for the agenda XC;R is dictatorial.

Part (a) is not much surprise in the light of Arrow�s theorem (see also results
by List and Pettit 2004 and Nehring 2003).30 Part (b) shows that endogenising the
rationality conditions does not help overcoming the impossibility: worse, it extends
the impossibility to the case of only two options.

Before proving Theorem 1, let us ask whether our agenda conditions � asym-
metry and minimal connectedness �are essential for the impossibility. Asymmetry
is indispensable, as otherwise inverse dictatorships (de�ned on the universal domain
by F (A1; :::; An) = f:p : p 2 Ajg for some inverse dictator j) generate consistent
judgment sets. Condition (i) is also indispensable if n � 3 and

(*) the agenda X is �nite or the logic satis�es L5 (compactness),

since without (i) majority voting generates consistent judgment sets. As Ron Holzman
indicated to me, also condition (ii) is indispensable, still assuming n � 3 and (*).
Dokow and Holzman (2005) independently introduced an algebraic condition, which
turned out to be equivalent to condition (ii) (if X is �nite). Dokow and Holzman
consider a �nite agenda X = fp1;:p1; :::; pk;:pkg and call a a vector of truth values
(t1; :::; tk) 2 f0; 1gk a feasible evaluation in case the corresponding judgment set
(consisting of all pj 2 X with tj = 1 and all :pj 2 X with tj = 0) is consistent. Ron
Holzman pointed out to me that the agenda condition (ii) holds if and only if the set
B � f0; 1gk of feasible evaluations is not an a¢ ne subspace of f0; 1gk, which is the
central algebraic condition analysed by Dokow and Holzman.31

In summary, we have the following result, whose formal proof is given later.
30While Arrow�s independence of irrelevant alternatives is much weaker than our systematicity,

note that his impossibility theorem also requires a Pareto condition.
31A set B � f0; 1gk is a linear subspace if it is closed under addition in the vector space f0; 1gk over

the binary �eld f0; 1g (with addition de�ned modulo 2, e.g. (1; 1; :::; 1) + (1; 0; :::; 0) = (0; 1; :::; 1)).
B � f0; 1gk is an a¢ ne subspace if B = fb� + c : b� 2 B�g for some linear subspace B� � f0; 1gk
and some �xed vector c 2 f0; 1gk. Based on their algebraic condition, Dokow and Holzman derive
an impossibility theorem that builds on an impossibility theorem by Nehring and Puppe (2002).
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Theorem 2 The converse of Theorem 1 holds whenever (*) holds and n � 3 (and
X contains a contingent proposition).

So, in important cases, the agenda conditions of Theorem 1 are indeed minimal.
Instead of proving Theorems 1 and 2, I will prove slightly stronger results. More

precisely, I will present a generalised de�nition of �minimally connected�, in which
I weaken the conditions (i) and (ii) such that Theorems 1 and 2 still hold and in
Theorem 2 we can now drop the restriction (*).

De�nition 3 The agenda X is minimally connected (second sense) if
(i*) X has an inconsistent subset Y with pairwise disjoint subsets Z1; Z2; Z3 such

that (Y nZj) [ Z:j is consistent for any j 2 f1; 2; 3g; and
(ii*) X has an inconsistent subset Y with pairwise disjoint subsets Z1; Z2; Z3 such

that (Y n(Zj [ Zk)) [ (Zj [ Zk): is consistent for any distinct j; k 2 f1; 2; 3g.

Remark 1 Minimal connectedness in the �rst sense implies minimal connectedness
in the second sense, and the two are equivalent under (*).

Proof. For any negated proposition q = :p 2 X, let :q stand for p rather than
for ::p.32

1. I �rst show that (i) implies (i*), and (ii) implies (ii*). If (i) holds, then (i*)
follows by taking Y to be as in (i) and letting Z1; Z2; Z3 � Y be disjoint singletons.
Now assume (ii) holds. Let Y be as in (ii), and let Z be a smallest even-sized subset
of Y such that (Y nZ) [ Z: is consistent. Consider any partition of Z into sets
Z1; Z2;W � Z, where Z1 and Z2 are singletons. Then (ii*) can be shown to hold by
considering the set Y � := (Y nW ) [W: with pairwise disjoint subsets Z1, Z2, and
Z3 :=W

:.
2. Now assume (*). I show that (i*) implies (i), and (ii*) implies (ii). If (i*)

holds, there is an inconsistent set Y � X with pairwise disjoint subsets Z1; Z2; Z3
such that each (Y nZj) [ Z:j , j = 1; 2; 3; is consistent. By (*) Y has a �nite minimal
inconsistent subset Y �. Each Zi, i = 1; 2; 3, must have a non-empty intersection with
Y �, as otherwise (Y nZj) [ Z:j would contain the (inconsistent) set Y �. So jY �j � 3,
proving (i). Now assume (ii*). Then there are an inconsistent set Y � X with
pairwise disjoint subsets Z1; Z2; Z3 such that (Y n(Zj [Zk))[ (Zj [Zk): is consistent
for any distinct j; k 2 f1; 2; 3g. By (*) Y has a �nite minimal inconsistent subset Y �.
Put Z�j := Zj \ Y � for each j = 1; 2; 3. Note that, regardless of how many of the sets
Z�1 ; Z

�
2 ; Z

�
3 have even size, there must exist distinct indices j; k 2 f1; 2; 3g such that

the union Z := Z�j [ Z�k has even size. The set (Y �nZ) [ Z: is consistent, as it is a
subset of (Y n(Zj [ Zk)) [ (Zj [ Zk):. So (ii) holds. �

As desired, this second sense of �minimally connected�yields the following stronger
versions of Theorems 1 and 2.

Theorem 1* If the agenda X is minimally connected (in the second sense) and
asymmetric, every regular and systematic aggregation rule is dictatorial.

32More precisely, when I use : in front of some p 2 X I mean a modi�ed negation symbol �, where
� p := q if p = :q for some q, and � p := :p otherwise. p and ::p are essentially identical in the
sense of Proposition 2(f), but only p is contained in X as X contains no double-negated propositions.
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Theorem 2* The converse of Theorem 1* holds whenever n � 3 (and X contains a
contingent proposition).

I now prove these theorems, which imply Theorems 1 and 2 by Remark 1. As in
the proof of Remark 1, I will make extensive (implicit) use of L1-L3 and Proposition
2; and I will again use the mentioned convention on double-negations.

Proof of Theorem 1*. Put N := f1; :::; ng. Assume X is minimally connected
(second sense) and asymmetric, and F is regular and systematic. Let W be the set
of all coalitions C � N for which there exists p 2 X and (A1; :::; An) 2 Domain(F )
such that fi : p 2 Aig = C and p 2 F (A1; :::; An). Using systematicity, it follow
that F (A1; :::; An) = fp 2 X : fi : p 2 Aig 2 Wg. Call the members of W "winning
coalitions". For any consistent set Z � X; let AZ be some consistent and complete
judgment set such that Z � AZ . (The existence of AZ is ensured by part (e) of
Proposition 2.)

Claim 1. N 2 W, and, for every coalition C � N , C 2 W if and only if NnC =2 W.
The second part of the claim follows from collective rationality together with

universal domain. Now assume N =2 W. By asymmetry, X has a consistent subset C
such that C: is inconsistent. Let (A1; :::; An) be the pro�le for which Ai = AC for all
i 2 N . As N =2 W, F (A1; :::; An) contains no element of C. So C: � F (A1; :::; An),
violating the consistency of F (A1; :::; An).

Claim 2. There exists no partition of N into three winning coalitions C1; C2; C3.
Assume for contradiction that C1; C2; C3 is a partition of N with C1; C2; C3 2 W.

Let Y; Z1; Z2; Z3 be as in (ii*). Consider the pro�le (A1; :::; An) de�ned by

Ai :=

8<:
A(Y n(Z2[Z3))[(Z2[Z3): if i 2 C1
A(Y n(Z1[Z3))[(Z1[Z3): if i 2 C2
A(Y n(Z1[Z2))[(Z1[Z2): if i 2 C3:

We have Z1 � F (A1; :::; An) as C1 2 W, Z2 � F (A1; :::; An) as C2 2 W, Z3 �
F (A1; :::; An) as C3 2 W, and Y n(Z1 [ Z2 [ Z3) � F (A1; :::; An) as N 2 W by claim
1. So Y � F (A1; :::; An), violating consistency.

Claim 3. For any coalitions C;C� � N; if C 2 W and C � C� then C� 2 W.
Assume for contradiction that C;C� � N with C � C�, C 2 W and C� =2 W.

Put C1 := C�nC and C2 := NnC�. Then C2 2 W by claim 1. As fC;C1; C2g is a
partition of N , we have C1 =2 W by claim 2, and hence NnC1 = C [C2 2 W by claim
1. Let Y; Z1; Z2; Z3 be as in (i*). Consider �rst the pro�le (A1; :::; An) de�ned by

Ai :=

8<:
A(Y nZ1)[Z:1 if i 2 C
A(Y nZ2)[Z:2 if i 2 C2
A(Y nZ3)[Z:3 if i 2 C1:

We have Z:1 � F (A1; :::; An) as C 2 W, Z:2 � F (A1; :::; An) as C2 2 W, Z3 �
F (A1; :::; An) as C [ C2 2 W, and Y n(Z1 [ Z2 [ Z3) � F (A1; :::; An) as N 2 W by
claim 1. In summary, we have (Y n(Z1 [ Z2)) [ (Z1 [ Z2): � F (A1; :::; An). So the
set (Y n(Z1 [ Z2)) [ (Z1 [ Z2): is consistent.

Using this consistency we now construct the following new pro�le (A1; :::; An):

Ai :=

8<:
A(Y nZ1)[Z:1 if i 2 C
A(Y nZ2)[Z:2 if i 2 C2
A(Y n(Z1[Z2))[(Z1[Z2): if i 2 C1:
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We now have Z2 � F (A1; :::; An) as C 2 W, Z1 � F (A1; :::; An) as C2 2 W, and
Y n(Z1 [ Z2) � F (A1; :::; An) as N 2 W by claim 1. So Y � F (A1; :::; An), violating
consistency.

Claim 4. For any coalitions C;C� � N; if C;C� 2 W then C \ C� 2 W.
Consider any C;C� 2 W, and assume for contradiction that C1 := C \ C� =2 W.

Put C2 := C�nC and C3 := NnC�. Let Y; Z1; Z2; Z3 be as in part (i*) of the agenda
assumption. Noting that C1; C2; C3 form a partition of N , we de�ne the pro�le
(A1; :::; An) by:

Ai :=

8<:
A(Y nZ1)[Z:1 if i 2 C1
A(Y nZ2)[Z:2 if i 2 C2
A(Y nZ3)[Z:3 if i 2 C3.

By C1 =2 W and NnC1 = C2 [ C3 we have C2 [ C3 2 W by claim 1, and so Z1 �
F (A1; :::; An). By C 2 W and C � C1 [ C3 we have C1 [ C3 2 W by claim 3, and
so Z2 � F (A1; :::; An). Further, Z3 � F (A1; :::; An) as C1 [ C2 = C� 2 W. Finally,
Y n(Z1 [ Z2 [ Z3) � F (A1; :::; An) as N 2 W by claim 1. In summary, we have
Y � F (A1; :::; An), violating consistency.

Claim 5. There is a dictator.
Consider the intersection of all winning coalitions, eC := \C2WC: By claim 4,eC 2 W. So eC 6= ;, as by claim 1 ; =2 W. Consequently, there exists a j 2 eC: I

prove that j is a dictator. Consider any (A1; :::; An) 2 Domain(F ) and p 2 X, and
let us prove that p 2 F (A1; :::; An) if and only if p 2 Aj . If p 2 F (A1; :::; An) then
C := fi : p 2 Aig 2 W; hence j 2 C (since j belongs to every winning coalition), i.e.
p 2 Aj . If p =2 F (A1; :::; An); then :p 2 F (A1; :::; An); so by an argument analogous
to the one just used, :p 2 Aj , whence p =2 Aj . �

I now turn to Theorem 2*. Case 3 in the proof is essentially an argument made
in Dokow and Holzman (2005).

Proof of Theorem 2*. Assume n � 3 and X contains a contingent proposition. I
show that if not all of the agenda conditions of asymmetry, (i*) and (ii*) hold then
there exists a regular, systematic and non-dictatorial aggregation rule F .

Case 1 : X is not asymmetric. Let F be an inversely dictatorial rule, de�ned
on the universal domain by F (A1; :::; An) = XnAj for some inverse dictator j. F is
obviously systematic and non-dictatorial and generates complete judgment sets. F
also generates consistent judgment sets, because F (A1; :::; An) = f:p : p 2 Ajg is
consistent as X is not asymmetric.

Case 2 : X violates (i*). Let F be majority rule among the persons 1,2,3, de�ned
on the universal domain by F (A1; :::; An) = fp 2 X : at least two of the sets A1; A2; A3
contains pg. Obviously, F is systematic and generates complete judgment sets. F
is also non-dictatorial since x contains a contingent proposition (if X contained only
tautologies and contradictions, every i would be a dictator). To show that F gen-
erates consistent judgment sets, assume for contradiction that Y := F (A1; :::; An) is
inconsistent. For each i 2 f1; 2; 3g; consider the subset Zi := fp 2 Y : p =2 Aig;
we have (Y nZi) [ Z:i = Ai, which is consistent. Moreover, Z1; Z2; Z3 are pairwise
disjoint: if p 2 Zj \ Zk (for distinct j; k 2 f1; 2; 3g) then p =2 Aj and p =2 Ak, and so
p =2 Y by de�nition of F , in contradiction with Zj \ Zk � Y . But then (i*) would
hold, a contradiction. So Y is consistent.
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Case 3 : X violates (ii*). De�ne F on the universal domain by F (A1; :::; An) :=
fp 2 X : the number of persons i 2 f1; 2; 3g with p 2 Xi is oddg. Obviously,
F is systematic. F is non-dictatorial for the same reason as in case 2. F also
generates complete judgment sets, as n is odd. Now assume for contradiction that
Y := F (A1; :::; An) is inconsistent. The sets Z1 := A1n(A2 [A3), Z2 := A2n(A1 [A3)
and Z3 := A3n(A1[A2) are pairwise disjoint. Further, for any distinct j; k 2 f1; 2; 3g,
letting i 2 f1; 2; 3gnfj; kg, we have Zj [ Zk = fp 2 Y : p =2 Aig = Y nAi, and so

(Y n(Zj [ Zk)) [ (Zj [ Zk): = (Y n(Y nAi)) [ (Y nAi):

= (Y \Ai) [ (AinY ) = Ai,

a consistent set. But then (ii*) holds, a contradiction. So Y is consistent. �

6 Judgment aggregation in general logics vs. in a par-
ticular logic

Not all results on judgment aggregation can or should be stated in general logics:
some results require a particular logic, but often not classical propositional logic.

The general logics model is appropriate for results about agendas (decision prob-
lems) that are characterised by certain relations (of inconsistency or entailment)
between the propositions, regardless of the particular logic generating these relations
or the particular syntactic form of the propositions. Examples are the minimally con-
nected agenda of Theorem 1, and, if suitably rede�ned in general logics, Nehring and
Puppe�s (2002) agendas, Gärdenfors�Boolean algebra agenda, and Dietrich�s (2004)
atomic agenda.33

By contrast, the restriction to a particular logic is needed for results about agendas
(decision problems) characterised by propositions of a particular syntactic form, hence
available only in particular languages L. I give two examples. Dietrich�s (2005)
possibility theorem holds for network agendas X, which belong to the conditional
logic C+ and contain only propositions of the following syntactic forms (and their
negations): atomic propositions, and (bi)conditionals p ! q or p $ q, where p
and q are conjunctions of one or more atomic propositions. Pauly and van Hees�
(2004) Theorem 3 holds for atomically closed agendas X, which belong to classical
propositional logic and contain (i) each atomic proposition a that occurs in some
proposition in X, and (ii) the propositions a^ b;:a^ b; a^:b;:a^:b for any atomic
propositions a; b 2 X. It is, however, possible to restate their Theorem 3 for a
33For instance, the de�nition of atomic agendas can be restated as follows for a general logic (L;�)

(and Dietrich�s 2004 impossibility result �Corollary 2�still holds if (L;�) satis�es L1-L3). Intuitively,
the atoms of X are the �logically strongest�consistent members of X. For instance, if X belongs to a
classical propositional logic, contains only propositions made up of the (distinct) atomic propositions
a; b, and contains a^ b; a^:b;:a^ b;:a^:b, then the latter four propositions are atoms of X (a^ b
is an atom as it entails each q 2 X consistent with a ^ b). Formally, call p 2 X an atom of X if p is
consistent and p is inconsistent with a member of each pair q;:q 2 X. Now X is intuitively atomic
if it is rich in atoms in the sense that the disjunction of all its atoms is a tautology (the previous
example agenda is atomic as the disjunction of a^ b,a^:b;:a^ b;:a^:b is a tautology) �but note
that disjunctions need not be formable in L (especially if they are disjunctions of in�nitely many
atoms). However, as a disjunction of propositions is a tautology just in case the conjunction of the
negations of these propositions is inconsistent, we can formally de�ne X as atomic if the set f:p : p
is an atom of Xg is inconsistent.
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general logic satisfying L1-L3, plus L^ (see footnote 11) to ensure that conjunctions
are formable.34

7 Conclusion

I have argued that a large variety of decision problems can be represented in logical
terms, where each decision problem requires its particular logical language able to
express the propositions under consideration. To be precise, two conditions must
hold for a collective decision problem to be formalisable as a judgment aggregation
problem in general logics (see Section 2.3):

(i) A decision can be construed as the acceptance or rejection of (usually intercon-
nected) propositions from a possibly rich logical language, according to some relevant
notion of collective acceptance/rejection (often belief; or desire, belief of moral de-
sirability, act of making true, etc.).

(ii) The informational basis of a decision can be construed as the individuals�
acceptances/rejections of these propositions, according to some relevant notion of
individual acceptance/rejection (often belief).

For instance, Arrowian preference aggregation problems satisfy (i)-(ii), with pro-
positions of the form xRy in a predicate logic. While (i) often holds, (ii) fails whenever
the informational basis takes a di¤erent form. Notably, the informational basis of
welfare economics (in A. Sen�s model of social welfare functionals) is richer than in-
dividual acceptances/rejections of ranking propositions xRy: it consists of individual
welfare functions. So welfare economics is not a special case of judgment aggregation.

Given the multitude of logics and their complexity, one might have feared that a
separate approach is needed for each type of decision problem (each logic), and that
judgment aggregation looses its unity and simplicity as a �eld. Fortunately, working
with general logics (say, based on L1-L3) is simple and captures various logics (hence
decision problems), notably classical propositional logic and many modal, conditional,
predicate, and fuzzy logics. The framework L1-L3 (plus perhaps L5) is often appro-
priate when consistency and completeness are the only rationality conditions under
consideration. Condition L4 (or weaker conditions) may become additionally useful
to study the rationality condition of deductive closure.

To demonstrate that results can often be proven for a general (rather than a
particular) logic, I have shown that many simple tools underlying the typical proofs
in judgment aggregation are also available in general logics. I have also generalised
existing impossibility theorems about systematic aggregation rules to general logics.

I hope to have convinced the reader that working with general logics does not make
judgment aggregation more di¢ cult, but far more general, and more transparent by
removing unnecessary special assumptions on the logic.

34To do so, suppose there is a set A � L of logically independent propositions, called the atomic
propositions (�logically independent�means that any set containing exactly one member of each pair
p;:p 2 A is consistent). Then Pauly and van Hees�Theorem 3 remains true in L1-L3,L^ if the
de�nition of an atomically closed agenda is complemented by a third condition: each p 2 X is either
an atomic proposition or constructed from atomic propositions using : and ^.
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