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Abstract

We analyse the problem of aggregating judgments over multiple issues from the per-
spective of whether aggregate judgments manage to e�ciently use all voters’ private
information. While new in judgment aggregation theory, this perspective is familiar
in a di↵erent body of literature about voting between two alternatives where voters’
disagreements stem from conflicts of information rather than interests. Combining
the two bodies of literature, we consider a simple judgment aggregation problem and
model the private information underlying voters’ judgments. Assuming that voters
share a preference for true collective judgments, we analyse the resulting strategic
incentives and determine which voting rules e�ciently use all private information.
We find that in certain, but not all cases a quota rule should be used, which decides
on each issue according to whether the proportion of ‘yes’ votes exceeds a particular
quota.

Keywords: judgment aggregation, private information, e�cient information aggrega-
tion, strategic voting

1 Introduction

In the by now well-established theory of judgment aggregation, a group needs to
form a ‘yes’ or ‘no’ judgment on di↵erent issues, based on the judgments of the group
members on these issues. For instance, the jury in a court trial might need to form a
judgment on whether the defendant has broken the contract, and whether the contract
is legally valid; the United Nations security council might need to form a judgment
on whether country X is threatened by a military coup, and whether the economy
of country X is collapsing; and so on. Group judgments matter in practice. They
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may determine group action: in the court trial example, they may determine whether
the defendant is convicted, and in the United Nations example they may determine
whether a large-scale international intervention in country X will happen.

So far, nearly the entire judgment aggregation theory follows the classical social-
choice theoretic approach of aiming to find out how – and whether – group judgments
can reflect the individuals’ judgments in a procedurally fair manner, where ‘fair’ is
spelled out in terms of axiomatic conditions on the aggregation rule (such as the an-
onymity condition or the Pareto-type condition of respecting unanimous judgments).
The recent Symposium on Judgment Aggregation in Journal of Economic Theory (C.
List and B. Polak eds., 2010, vol. 145(2)) illustrates well this social-choice theoretic
approach, as well as the state of the art of the theory, which we review below. This
approach is certainly important in many contexts. The judgment aggregation literat-
ure so far, however, has paid only little attention to a di↵erent ‘epistemic’ approach of
aiming to track the truth, i.e., reach true group judgments. The theory does not model
the private information underlying voters’ judgments, thereby preventing itself from
studying questions of e�cient information aggregation. Yet such an epistemic per-
spective seems particularly natural in the context of aggregating judgments (rather
than preferences1). In our court trial example, the ultimate goal seems indeed to be
to find out independent facts (of whether the defendant has broken the contract and
whether the contract is legally valid). So, the jury’s voting rule should be optimised
with respect to the goal that the resulting group judgments are true, not that they
are fair to the jurors.

This alters the problem of designing the voting rule. Properties of voting rules
standardly assumed in judgment aggregation theory, such as respecting unanimous
judgments or anonymity, cannot be taken for granted anymore. If they turn out to
be justified, they derive their justification from the truth-tracking goal rather than
fairness considerations. To illustrate the contrast, suppose each juror expresses the
judgment (opinion) that the contract was broken. A collective ‘broken’ judgment
would then of course count as good from the classical social-choice theoretic per-
spective of procedural fairness. However, from a truth-tracking perspective, much
depends on questions such as whether the jurors’ judgments are su�cient evidence
for breach of contract, and whether voters have expressed their judgments truthfully.

This paper analyses judgment aggregation from the truth-tracking and strategic-
voting perspective. We model voters’ private information, which allows us to ask
questions about e�cient information aggregation and strategic voting in a Bayesian
voting game setting. Though new within judgment aggregation theory, the modelling
of private information is well-established in a di↵erent body of literature about voting
between two alternatives, which started with seminal work by Austen-Smith and
Banks (1996) and Feddersen and Pesendorfer (1997) and can be placed in the broader
context of work on the Condorcet Jury Theorem (see the review below). In the base-
line case, voters share a common interest of finding out the ‘correct’ alternative, but
hold possibly conflicting private information about which of the alternatives might
be ‘correct’. The voting rule should be designed so as to help finding the ‘correct’

1In preference aggregation theory, the core of social choice theory, an epistemic perspective would
be less natural since there is no objectively ‘true preference’ to be found.
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alternative by making optimal use of all the private information scattered across the
voters. So, the goal is e�cient information aggregation. Such an ‘epistemic’ binary
collective choice problem can in fact be viewed as a special judgment aggregation
problem, involving just one issue. Our court trial example involves two issues: firstly,
whether the contract was broken, and secondly, whether it is legally valid. If instead
only the first issue were on the jury’s agenda, the jury would face a single-issue
judgment aggregation problem, or equivalently, a binary collective choice problem.
The entire machinery and results of the mentioned binary collective choice literature
could then be applied in order to design the voting rule.

This paper therefore combines insights from two largely disconnected fields, namely
judgment aggregation theory and binary collective choice with common interests. In-
dependently, Ahn and Oliveros (2011) and de Clippel and Eliaz (2011) take a similar
approach, but ask di↵erent questions, as reviewed below. The two bodies of liter-
ature can learn from each other. Indeed, judgment aggregation theory can benefit
from methodologies developed in the theory of binary colective choice with common
interests, while the latter theory can in turn benefit from an extension beyond single-
issue agendas towards more complex agendas with multiple issues. Analysing this
multi-issue case does not reduce to analysing each issue separately, since preferences
establish links between di↵erent issues.

It is worth starting simple. This paper therefore assumes that the group faces an
agenda with just two issues, the simplest kind of multi-issue agenda; but many of our
results generalize easily, as discussed in the appendix. Though simple, agendas with
just two issues are important in practice. Our court trial example and United Nations
example each involve two issues. To mention further two-issue agendas, a medical
commission might need to issue joint judgments on whether a therapy is e↵ective, and
whether it is compatible with given ethical standards; members of a political party in
charge of elaborating the party programme might seek joint judgments on whether a
tax cut is a↵ordable, and whether it is popular; a university hiring committee might
seek joint judgments on whether a given candidate is good at research, and whether
he or she is good at teaching; and finally, economic advisors to a government during
the banking crisis in 2008 might need to issue collective judgments on whether a
given bank has short-term liquidity problems, and whether it has long-term liquidity
problems.

The issues of an agenda could in principle be mutually interconnected, so that the
judgments taken on the issues logically constrain each other; for instance, a ‘no’ judg-
ment on all issues might be inconsistent. Indeed, interconnections are what render
judgment aggregation non-trivial if the usual social-choice theoretic approach of pro-
cedural fairness is taken.2 However, within our truth-tracking approach, designing
the voting rule is non-trivial even if the issues are mutually independent. We there-
fore assume independence between issues (see Bozbay 2012 for follow-up work on the
case of interconnected issues).

2In the absence of interconnections one can safely aggregate by taking a separate vote on each
issue. This never generates inconsistent collective judgments and meets all standard social-choice
theoretic requirements such as anonymity.
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Structure of the paper. Section 2 introduces our model, in which voters vote on the
basis of private information and are guided by ‘truth-tracking preferences’, i.e., aim
for true collective judgments. Section 3 addresses the key question of how to design
the voting rule such that it leads to e�cient decisions as well as simple-minded,
truthful voting behaviour in equilibrium. It will turn out that in certain, but not all
cases one should use a ‘quota rule’, which decides on each issue according to whether
the number of ‘yes’ judgments on the issue exceeds a particular quota. The details
depend on the exact kind of truth-tracking preferences. For certain preferences, the
only voting rule which induces an e�cient and truthful Bayesian Nash equilibrium
is a quota rule with particular thresholds. For certain other preferences, there is an
entire class of such voting rules, including non-monotonic ones. Section 4 analyses the
notion of truthful behaviour, by determining the conditions under which a ‘sincere’
voter directly reveals his information in his vote. In Appendix A, we consider the
generalization of our framework and part of results from two to an arbitrary number
m � 2 of issues. This links us to the traditional literature on jury theorems that
emerges as the special case of m = 1 issue. Finally, Appendix B contains all proofs.

Literature review. We now selectively review the two bodies of literature to which
this paper connects, beginning with judgment aggregation theory. As mentioned, this
theory’s primary objective has so far been to find out which voting rules can aggregate
the judgments of group members over some issues in accordance with certain axio-
matic requirements with a classic social-choice theoretic flavour, such as unanimity
preservation (the counterpart of the Pareto principle) and independence (the coun-
terpart of Arrow’s independence of irrelevant alternatives). A series of possibility and
impossibility results address this query, by giving answers which depend, firstly, on
the axiomatic requirements on the voting rule, and secondly, on the agenda of issues
under consideration (e.g., List and Pettit 2002, Dietrich 2006, 2007, 2010, Nehring
and Puppe 2008, 2010, Dietrich and List 2007a, 2008, Dokow and Holzman 2010a,
2010b, Dietrich and Mongin 2010; see also precursor results by Guilbaud 1952 and
Wilson 1975; for an introductory overview see List and Polak 2010). By contrast, a
small minority of papers about judgment aggregation take a truth-tracking perspect-
ive (e.g., Bovens and Rabinowicz 2006, List 2005 and Pivato 2011). Their innovation
is to apply the classical Condorcet Jury Theorem to judgment aggregation. Despite
taking a truth-tracking perspective, they have little in common with our work, since
private information and strategic incentives are not being considered.3 List and Pettit
(2011) provide the most systematic philosophical analysis of the truth-tracking ap-
proach, already discussing strategic incentives and private information and drawing
on the second body of literature to which we now turn.

As for this second body of literature, it is concerned with voting rules for binary
choice problems in which disagreements are driven (partly or totally) by conflicting
information rather than conflicting interests. Specifically, the utilities which voters

3Dietrich and List (2007b) analyse strategic voting in judgment aggregation, but in a sense not
relevant to us since strategic voting is not modelled as coming from private information and a voter
is motivated by the somewhat di↵erent goal that the collective judgments match his own judgments.
Such assumptions are more natural under common knowledge of each other’s judgments than under
informational asymmetry. See also related work by Nehring and Puppe (2002, 2007).
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derive from decisions are a↵ected by the same unknown ‘state of the world’, about
which voters hold private information.4 Austen-Smith and Banks (1996) and Fed-
dersen and Pesendorfer (1997) show that it typically cannot be rational for all voters
to vote sincerely, and that the choice of voting rule matters considerably for sin-
cere voting and e�cient information aggregation. While the former authors consider
the ‘purely epistemic’ case without conflict of interest, the latter authors introduce
some preference heterogeneity (and focus primarily on large electorates). Austen-
Smith and Feddersen (2005, 2006) add an extra dimension of pre-voting deliberation.
Duggan and Martinelli (2001) extend the approach to continuous rather than binary
private information. Feddersen and Pesendorfer (1998), Coughlan (2000) and Gerardi
(2000) examine the (in)e↵ectiveness of unanimity rule in ‘protecting the innocent’ in
jury trials. Goertz and Maniquet (2011) analyse e�cient information aggregation in
large electorates, showing that approval voting outperforms other voting rules in their
setting.

Like us (and independently from us), Ahn and Oliveros (2011) and de Clippel and
Eliaz (2011) also combine these two aggregation problems by studying elections on
multiple binary issues with common preferences and asymmetric information. Each
of these papers compares two voting procedures. Ahn and Oliveros (2011) compare
resolving each issue by a majority vote among all voters with resolving each issue
by a majority vote among a subgroup assigned to this issue (where the subgroups
for di↵erent issues are disjoint and equally large). They show that neither of these
procedures is generally more e�cient than the other one if the group is large enough.
De Clippel and Eliaz (2011) consider a group choice between two possible actions
(such as convicting or acquitting the defendant), where the ‘optimal’ action depends
on two or more issues/criteria, where each voter holds private information on each
issue (possibly with correlations across issue). They compare premise-based voting
with conclusion-based voting. Under the former, a vote is taken on each issue, and
the outcomes determine the group action (conclusion). Under the latter, the group
votes directly on which action to take, without forming a group view on the issues.
They show that premise-based voting is more e�cient than conclusion-based voting,
but that the di↵erence vanishes asymptotically as the group size increases. These
two works are important advances, into directions di↵erent from our work which is
not concerned with comparisons of fixed mechanisms but with the design of e�cient
mechanisms.

2 The Model

2.1 A simple judgment aggregation problem

We consider a group of voters, labelled i = 1, ..., n, where n � 2. This group needs
a collective judgment on whether some proposition p or its negation p̄ is true, and
whether some other proposition q or its negation q̄ is true. In our court trial example,

4This contrasts with the scenario of private values of, but common information about, alternatives.
Such elections lead to somewhat di↵erent Bayesian games. While the case of two alternatives is trivial,
a multi-alternative analysis is given by Ahn and Oliveros (2012).
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p states that the contract was broken, and q that it is legally valid; in our job candidate
example, p states that the candidate is good at research, and q that he or she is good
at teaching; and so on for our other examples. The four possible judgment sets are
{p, q}, {p, q̄}, {p̄, q} and {p̄, q̄}; we abbreviate them by pq, pq̄, p̄q and p̄q̄, respectively.
For instance, pq̄ means accepting p but not q. Each voter votes for a judgment set
in J = {pq, pq̄, p̄q, p̄q̄}. After all voters cast their votes, a collective decision in J is
taken using a voting rule. Formally, a voting rule is a function f : J n ! J , mapping
each voting profile v = (v1, ..., vn) to a decision d ⌘ f(v). Among the various voting
rules, quota rules stand out as particularly natural and common. A quota rule is given
by two thresholds mp,mq 2 {0, 1, ..., n + 1}, and for each voting profile it accepts p
[q] if and only if at least mp [mq] voters accept it in the profile. Quota rules have
three salient properties:

• Anonymity: For all voting profiles (v1, ..., vn) 2 J n and all permutations (i1, ...,
in) of the voters, f(vi1 , ..., vin) = f(v1, ..., vn). Informally, the voters are treated
equally.

• Monotonicity: For all voting profiles v,v0 2 J n, if for each r in f(v) the voters
who accept r in v also accept r in v

0, then f(v0) = f(v). Informally, additional
support for the collectively accepted propositions never reverses the collective
acceptance of these propositions.

• Independence: The decision on each proposition r 2 {p, q} only depends on
the votes on r.5 Informally, the group in e↵ect takes two separate votes, one
between p and p̄ and one between q and q̄.

Remark 1 A voting rule f : J n ! J is a quota rule if and only if it is anonymous,
monotonic and independent.

We briefly sketch the proof of the non-trivial direction of implication. As can be
shown, if a voting rule f : J n ! J is anonymous and independent, then it is given
by two sets Mp,Mq ✓ {0, 1, ..., n}, in the sense that for each voting profile v 2 J n the
decision f(v) contains r (2 {p, q}) if and only if the number of votes in v containing
r belongs to Mr. If f is moreover monotonic, each set Mr can be shown to take the
form {mr,mr + 1, ..., n} for some threshold mr 2 {0, 1, ..., n + 1}. Clearly, f is the
quota rule with thresholds mp and mq.

2.2 A common preference for true collective judgments

Exactly one judgment set in J is ‘correct’, i.e., contains propositions which are fac-
tually true. It is called the state (of the world) and is generically denoted by s. For
instance, the state might be pq̄, so that p and q̄ are true (and p̄ and q are false). Voters
have identical preferences, captured by a common utility function u : J ⇥ J ! R

5Given a voting profile v, the subprofile with respect to r is denoted vr (2 {r, r̄}n), and the
collective decision with respect to r is denoted fr(v) (2 {r, r̄}). Independence means that for all
voting profiles v,v0 2 J n, if vr = v0

r, then fr(v) = fr(v
0) .
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which maps any decision-state pair (d, s) to its utility u(d, s). Given voters’ truth-
tracking goal, one would expect u(d, s) to be high if d = s, i.e., if the decision is
correct. But how exactly should u be specified? We focus on two natural kinds of
preferences:

Simple preferences. Here, the utility function is given by

u(d, s) =

⇢
1 if d = s (correct decision)
0 if d 6= s (incorrect decision).

(1)

Such preferences are the simplest candidate for truth-tracking preferences. Correct
decisions are preferred to incorrect ones, without further sophistication.

Consequentialist preferences. Here, we assume that the decision leads to one
of two possible consequences, typically representing group actions. This is captured
by a consequence function Co which maps the set of possible decisions J to a two-
element set of possible consequences. The consequence function might look as follows
in examples given earlier. In our court trial example, the court decision pq leads to
conviction, since both premises of guilt are found to be satisfied (Co(pq) = ‘convic-
tion’), while the other decisions all lead to acquittal (Co(p̄q̄) = Co(pq̄) = Co(p̄q) =
‘acquittal’). In our job candidate example, the decision pq leads to a hire since the
candidate is seen as meeting both criteria (Co(pq) = ‘hire’), while the other decisions
all lead to no hire (Co(p̄q̄) = Co(pq̄) = Co(p̄q) = ‘no hire’). In our United Nations
example, the decisions pq̄ and p̄q each lead to a large-scale international intervention
in country X (Co(pq̄) = Co(p̄q) = ‘intervention’), whereas the decisions pq and p̄q̄
both lead to no intervention since the United Nations then consider an intervention
as being too risky or unnecessary, respectively (Co(pq) = Co(p̄q̄) = ‘no intervention’).
In our bank rescuing example, the decisions pq̄ and p̄q each lead to a governmental
rescue plan for the bank (Co(pq̄) = Co(p̄q) = ‘rescue’), whereas the decisions pq and
p̄q̄ both lead to no rescue plan since a rescue is seen as infeasible or unnecessary,
respectively (Co(pq) = Co(p̄q̄) = ‘no rescue’). The consequentialist utility function is
given by

u(d, s) =

⇢
1 if Co(d) = Co(s) (correct consequence)
0 if Co(d) 6= Co(s) (incorrect consequence).

(2)

Incorrect decisions (d 6= s) can have correct consequences (Co(d) = Co(s)). The
hiring committee might view the candidate as good at research and bad at teaching
when in fact the opposite is true, so that the resulting consequence (‘no hire’) is
correct for wrong reasons. This gives high utility under consequentialist preferences,
but low utility under simple preferences.6

6In the judgment aggregation literature, the two possible consequences are often represented by
two additional propositions, c and c̄, which are referred to as ‘conclusion propositions’ in contrast to
the ‘premise propositions’ p, p̄, q, q̄. In our first two examples, the consequence function is encoded
in the biconditional c $ (p ^ q), whereas in our last two examples it is encoded in the biconditional
c $ ((p ^ q) _ (p̄ ^ q̄)).
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In the context of consequentialist preferences, one might wonder whether, given
that all that counts is the consequence, it would not su�ce to aggregate the voters’
judgments on the consequence, ignoring judgments on the underlying issues – leading
to a simple group decision problem between two alternatives. This would amount to
an informational loss: while a voter’s judgment on the consequence (the ‘conclusion’)
follows from his judgments on the two issues (the ‘premises’), the latter cannot gener-
ally be retrieved from the former. The lost information is valuable information, since,
as will turn out, the e�cient group action (which is ‘found’ by an optimal aggrega-
tion rule) often makes full use of a voter’s judgments on the issues, rather than using
only the information of which action follows from these judgments. Put formally,
given the votes on the two issues v1, ..., vn 2 J n, an optimal aggregation rule f leads
to the collective action Co(f(v1, ..., vn)) which depends on the submitted judgments
v1, ..., vn in such a way that not only the information of the resulting consequences
Co(v1), ...,Co(vn) is used. This suggests that voting directly on the consequence may
lead to ine�cient group actions, and that it is thus worth voting on the underlying
issues.7

In real life, many groups vote only on the consequence/action: while the under-
lying issues/premises typically play a role in the process of group deliberation and
discussion prior to voting, the voting itself often only involves a simple yes/no choice
on the action. As mentioned, such a conclusion-based procedure can be criticized
based on our analysis.

The empirical question of which real-life decision making bodies vote directly on
the conclusion and which (as assumed in this paper) vote on underlying issues is
beyond the scope of this theoretical paper. In support of the real-life importance
of voting on underlying issues, let us merely mention that for some decision-making
bodies – such as some criminal courts, constitutional courts, central banks, or political
organisations – it is desirable or even legally required to come up with reasons or
justifications for the actions which are implemented, for reasons of legitimacy and
accountability of public actions. In our terminology, the group needs a collective
decision on the issues, not just a collective action/consequence. For instance, many
courts must publicly state not just whether they convict the defendant, but also on
what grounds they do so, which involves taking positions on multiple issues. See
Kornhauser and Sager (1986) for public accountability of courts, and Pettit (2001)
and List and Pettit (2011) for accountability and legitimacy of political organisations.

2.3 Private information and strategies

If voters had not just common preferences, but also common information about what
the state might be, then no disagreement could arise. We however allow for in-

7A complete argument to the e↵ect that conclusion-based voting is ine�cient also requires invest-
igating the strategic incentives under the (di↵erent) game form of the conclusion-based procedure.
Such an argument is made by De Clippel and Eliaz (2011), albeit in a di↵erent framework. Rigor-
ously speaking, our results imply the ine�ciency of the conclusion-based procedure only under the
hypothesis that, under this procedure, a voter i votes for the consequence Co(vi) which follows from
his vote vi under the issue-based procedure. (A violation of this hypothesis would constitute a form of
untruthful voting, which could itself be viewed as a shortcoming of the conclusion-based procedure.)
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formational asymmetry. Each voter has a type, representing private information or
evidence.8 A voter’s type takes the form of an element of J , generically denoted
by t. For instance, a voter of type t = pq̄ has evidence for p and for q̄. We write
t = (t1, ..., tn) 2 J n for a profile of voters’ types. Nature draws a state-types com-
bination (s, t) 2 J n+1 according to a probability measure denoted Pr. When a
proposition r 2 {p, p̄, q, q̄} is meant to represent part of voter i’s type rather than
part of the true state, we often write ri for r. For instance, Pr(pi|p) is the probab-
ility that voter i has evidence for p given that p is true. By assumption, the prior
probability that r (2 {p, p̄, q, q̄}) is true is denoted

⇡r = Pr(r)

and belongs to (0, 1), and the probability of getting evidence for r given that r is true
is denoted

ar = Pr(ri|r),

belongs to (1/2, 1), and does not depend on the voter i. The parameters ap, ap̄, aq, aq̄
measure the reliability of private information, as they represent probabilities of re-
ceiving ‘truth-telling’ information. The lower bound of 1/2 reflects the (standard)
idea that information is more reliable than a fair coin.

By assumption, voters’ types are independent conditional on the state, and in
addition the state and the types w.r.t. p are independent of the state and the types
w.r.t. q.9 These independence assumptions allow one to express the joint distribution
of the state and the types by just a few parameters, namely ⇡p,⇡q, ap, ap̄, aq, aq̄. For
instance, the probability that the state is pq and all voters receive the truth-telling
evidence pq is

Pr(pq, p1q1, p2q2, ..., pnqn) = Pr(pq) Pr(p1q1, p2q2, ..., pnqn|pq) = ⇡p⇡qa
n
pa

n
q .

Each voter submits a vote in J based on his type. A (voting) strategy is a function
� : J ! J , mapping each type t 2 J to the type’s vote v = �(t). We write
� = (�1, ....,�n) for a profile of voters’ strategies. Together with a voting rule f and
a common utility function u, we now have a well-defined Bayesian game.

For a given type profile t 2 J n, we call a decision d e�cient if it has maximal
expected utility conditional on the full information t.10 Some common notions of
voting behaviour can now be adapted to our framework:

• A strategy � of a voter is informative if �(t) = t for all types t. An informative
voter directly reveals his information in his vote.

8The type could represent information that is not shared with other voters because of a lack of
deliberation or limits of deliberation. More generally, a voter i’s type could represent uncertainty of
other voters about i’s beliefs.

9Recall that the state consists of a proposition in {p, p̄} and another in {q, q̄}. The first [second] of
these propositions is what we call the state w.r.t. p [q]. A voter’s type w.r.t. p [q] is defined similarly.

10I.e., d maximizes E(u(d, S)|t) =
P

s2J u(d, s) Pr(s|t), where ‘S’ denotes the random variable
generating the state s in J .
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• A strategy � of a voter is sincere if for every type t, the vote �(t) maximises
the expected utility conditional on the information t. A sincere voter votes
for the decision which maximises the expected utility conditional on his type;
so, he acts as if his vote alone determined the decision, neglecting the other
voters and their strategies. (Technically, this amounts to optimal behaviour in
a hypothetical single-player decision problem.)

• A strategy profile � = (�1, ...,�n) is e�cient if for every type profile t =
(t1, ..., tn) the resulting decision d = f(�1(t1), ...,�n(tn)) is e�cient (i.e., has
maximal expected utility conditional on full information t). Hence, all the
information spread across the group is used e�ciently: the collective decision is
no worse than a decision of a (virtual) social planner who has full information.

• A strategy profile � = (�1, ...,�n) is an equilibrium if it is a Nash equilibrium
of the corresponding Bayesian game, i.e., if each strategy is a best response
to the other strategies. In such a profile, each voter maximises the expected
utility of the collective decision given the strategies of the other voters. (In
this maximisation exercise, it turns out that a voter must only consider cases
in which his vote is pivotal. Under a quota rule with majority thresholds, a
voter is for instance pivotal if half of the other voters votes pq and the other
half votes p̄q̄.)

While informativeness and sincerity are properties of a single strategy (or voter),
e�ciency refers to an entire profile.

Finally, to avoid distraction by special cases, we make two assumptions. First,
we exclude the degenerate case in which some decision in J is not e�cient for any
type profile whatsoever. Second, we exclude e�ciency ties, i.e., we exclude those
special parameter combinations such that some type profile t leads to di↵erent e�cient
decisions (with di↵erent consequences when we assume consequentialist preferences).

3 Which voting rules lead to e�cient information ag-

gregation?

3.1 Setting the stage

Our objective is to design the voting rule (‘mechanism’) in such a way as to yield
e�cient decisions on the basis of informative votes. In short, the voting rule should
render informative voting e�cient.11 We begin by justifying this objective. Prima
facie, two goals are of interest. The rule should, firstly, lead to e�cient outcomes,
and, secondly, encourage simple-minded, truthful behaviour. By such behaviour we
mean informative voting.12 To reach the second goal, informative voting should

11By saying “informative voting” without referring to a particular voter, we mean “informative
voting by all voters”.

12One might alternatively mean sincere voting – but in practice there is little di↵erence, since
informative and sincere voting coincide under reasonable informational assumptions. As one can
show, if informative voting is not sincere, then there exists a decision d 2 J such that no voter
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constitute an equilibrium. If additionally informative voting is e�cient, both goals
are reached. So, the double goal is that informative voting should be e�cient and
form an equilibrium. By part (a) of the following theorem, whenever informative
voting is e�cient, it a fortiori defines an equilibrium – which explains our primary
objective that informative voting be e�cient.

Theorem 1 Consider an arbitrary common utility function u : J 2 ! R.

(a) For any voting rule, if a strategy profile is e�cient, then it is an equilibrium.

(b) There is an anonymous voting rule for which informative voting is e�cient
(hence, an equilibrium).

This theorem, whose part (a) follows from a well-known result by McLennan
(1998), is general in that it applies to any kind of (common) preferences. The converse
of part (a) does not hold: for instance, under a constant voting rule all strategy
profiles are equilibria, typically without being e�cient. The message of part (b) is
positive but so far vague: it is always possible to make informative voting e�cient,
but apart from anonymity we do not know anything about the kind of voting rule we
can use. And indeed, for some kinds of common preferences, it may not be possible
to aggregate in an independent or monotonic way (as counterexamples show). But,
once we narrow down to simple or consequentialist preferences, can – or even must –
we aggregate in a monotonic resp. independent way? When can – or even must – we
use a quota rule? Such questions are answered below.

3.2 Simple preferences

This section addresses the case of simple preferences, given by the common utility
function (1). Which rules render informative voting e�cient? The answer is ‘simple’,
as we will see. To state our result, we first define two coe�cients:13

kp := min

(
k 2 {0, 1, ..., n+ 1} :

⇡p
1� ⇡p

>

✓
1� ap̄
ap

◆k ✓ ap̄
1� ap

◆n�k
)
, (3)

kq := min

(
k 2 {0, 1, ..., n+ 1} :

⇡q
1� ⇡q

>

✓
1� aq̄
aq

◆k ✓ aq̄
1� aq

◆n�k
)
. (4)

These coe�cients have an interpretation: as can be proved, for p [q] to be more
probably true than false given all information, at least kp [kq] individuals need to
receive evidence for p [q], i.e., need to have a type containing p [q].

ever finds himself in an informational position to consider d as best – a rather uninteresting, if not
unnatural scenario.

13The minimum defining kp or kq should be interpreted as n+1 if the set whose minimum is being
taken is empty. In fact, emptiness is impossible under simple preferences. This follows from our
non-degeneracy assumption on the model parameters (which also implies that kp, kq 2 {1, ..., n}).
Note that in (3) and (4) the right hand side of the inequality is strictly decreasing in k.
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Theorem 2 Assume simple preferences. Informative voting is e�cient if and only
if the voting rule is the quota rule with thresholds kp and kq.

This result shows that the quota rule with thresholds kp and kq is the only rule
we may use in view of making informative voting e�cient. This result is much more
specific than the purely existential claim in part (b) of Theorem 1. This progress was
possible by focusing on simple preferences.

3.3 Consequentialist preferences: first type

We now turn to consequentialist preferences. Much depends on the nature of the
consequence function. In principle, there exist 24 = 16 potential consequence func-
tions from J to a binary set of consequences. But, as we shall see shortly, there
are only two non-degenerate consequence functions up to isomorphism. We therefore
define two types of consequentialist functions. Consequentialist preferences (or the
consequence function) are said to be:

• of type 1 if Co(pq) = Co(p̄q̄) 6= Co(pq̄) = Co(p̄q);

• of type 2 if Co(pq) 6= Co(p̄q̄) = Co(pq̄) = Co(p̄q).

Our first two examples of consequentialist preferences in Section 2.2 are of type
1, while our last two examples are of type 2. But why are all non-degenerate con-
sequences of one of these two types? Firstly, consequence functions for which each
decision in J has the same consequence are of course degenerate and therefore un-
interesting. Also consequence functions which depend only on the decision between
p and p̄, or only on the decision between q and q̄, are degenerate, since in this case
we are essentially back to a decision problem with a single proposition-negation pair,
which has already been studied in the literature.14 The non-degenerate consequence
functions are those which genuinely depend on both propositions. Among all of them,
some assign each consequence to exactly two decisions in J , while the others assign
one consequence to three decisions and the other consequence to just one decision.
As one can show, the former consequence functions are of type 1, while the latter are
of type 2 up to isomorphism (i.e., up to exchanging p and p̄ and/or exchanging q and
q̄). Thus, by studying our two types of consequence functions, we will have covered
non-degenerate consequentialist preferences exhaustively.

We now address the first type, while the next subsection turns to the second type.
One might at first expect there to be little resemblance between the current prefer-
ences and simple preferences in terms of the appropriate voting rule. For instance,
even when all individuals have type pq, so that there is overwhelming evidence for
state pq, the current preferences allow us to e�ciently decide for p̄q̄, since this decision
has the same consequence as pq. Surprisingly, despite the di↵erences, consequentialist
preferences of type 1 come much closer to simple preferences than to consequentialist

14For instance, our UN intervention example would be degenerate if the question of whether to
intervene only depended on whether the country is considered as being threatened by a military coup
(p or p̄). The other pair of propositions (q or q̄) could then be eliminated from the voting process.
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preferences of type 2 in terms of the design of the voting rule. The coe�cients kp and
kq, defined earlier for simple preferences, again play a key role.

Theorem 3 Assume consequentialist preferences of type 1. A voting rule makes
informative voting e�cient and is monotonic if and only if it is the quota rule with
thresholds kp and kq.

So, as for simple preferences, the social planner is led to impose a quota rule with
the particular thresholds kp and kq. What distinguishes Theorem 3 from Theorem
2 is, for one, its somewhat di↵erent (and longer) proof, and secondly, the additional
monotonicity requirement. Without this extra condition, a number of other voting
rules become possible.15

3.4 Consequentialist preferences: second type

We now turn to consequentialist preferences of type 2. The space of aggregation
possibilities is somewhat di↵erent here. As we shall show, quota rules are not always
possible, and when they are, the two thresholds must be calculated di↵erently.

For all k, l 2 R, we define the coe�cient

�(k, l) =
⇡pakp(1� ap)n�k

⇡pakp(1� ap)n�k + ⇡p̄a
n�k
p̄ (1� ap̄)

k
⇥

⇡qalq(1� aq)n�l

⇡qalq(1� aq)n�l + ⇡q̄a
n�l
q̄ (1� aq̄)

l
.

(5)
One can show that �(k, l) has a natural interpretation if k, l 2 {0, 1, ..., n}: it is the
probability that the state is pq conditional on having k times evidence for (and n� k
times evidence against) p and l times evidence for (and n� l times evidence against)
q. So, �(k, l) = Pr(pq|t) for some (hence, any) type profile t 2 J n containing p
exactly k times and q exactly l times; or equivalently,

�(k, l) = Pr(p|p1, ...pk, p̄k+1, ..., p̄n)⇥ Pr(q|q1, ..., ql, q̄l+1, ..., q̄n).

As one can prove by drawing on the definition of the consequence function, given
a type profile t containing p exactly k times and q exactly l times, if �(k, l) > 1/2
then only the decision pq is e�cient, while otherwise the three other decisions are all
e�cient. This implies a first, simple characterization result. Henceforth, the number
of votes for a proposition r in a voting profile v is written nv

r .

Proposition 1 Assume consequentialist preferences of type 2. A voting rule f makes
informative voting e�cient if and only if for every voting profile v 2 J n the decision
f(v) is pq if �(nv

p , n
v
q ) > 1/2 and in {pq̄, p̄q, p̄q̄} otherwise.

15For consequentialist preferences of type 1, one may show that a (possibly non-monotonic) voting
rule f makes informative voting e�cient if and only if for every voting profile v 2 J n the decision
f(v) has the same consequence as the decision under the quota rule with thresholds kp and kq (i.e.,
Co � f = Co � g, where g is this quota rule). So, once we drop the monotonicity requirement, there
is not just one possible voting rule, as for simple preferences, but 24

n
possible rules (since there are

2 allowed decisions for each of the 4n profiles in J n).
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Which possibilities – if any – are left if we require the rule to be a quota rule? We
begin by introducing two coe�cients. Given that all voters hold evidence for q, how
many voters with evidence for p does it minimally take for the decision pq to become
e�cient? Similarly, given that all voters hold evidence for p, how many voters with
evidence for q does it take for the decision pq to become e�cient? The answer to
these questions is given by the following numbers, respectively:16

lp :=min{k 2 {0, ..., n} : �(k, n) > 1/2} (6)

lq :=min{k 2 {0, ..., n} : �(n, k) > 1/2}. (7)

Theorem 4 Assume consequentialist preferences of type 2. There exists a quota rule
making informative voting e�cient if and only if �(lp, lq) > 1/2. In this case, that
quota rule is unique and has the thresholds lp and lq.

Unlike when preferences are simple or consequentialist of type 1, and unlike in
the classic literature for a single pair of propositions p, p̄, we have an impossibility:

Corollary 1 Assume consequentialist preferences of type 2. For some combinations
of values of the model parameters (⇡p,⇡q, ap, ap̄, aq, aq̄ and n), no quota rule makes
informative voting e�cient.

For instance, if ⇡p = ⇡q = 0.5, ap = aq = ap̄ = aq̄ = 0.7 and n = 3, no quota rule
makes informative voting e�cient, whereas if instead ⇡p = ⇡q = 0.6, the quota rule
with thresholds lp = lq = 2 makes informative voting e�cient.

While by Corollary 1 it may be utopian to aim for a full-fledged quota rule, we now
show that one can always achieve two characteristic properties of quota rules, namely
anonymity and monotonicity, while often losing the third characteristic property,
namely independence. Specifically, we characterize the class of all monotonic and
anonymous (but not necessarily independent) aggregation possibilities. As we shall
see, this class consists of so-called quota rules ‘with exception’. Such rules behave
like a quota rule as long as the profile does not fall into an ‘exception domain’, while
generating the ‘exception decision’ pq on the exception domain. Formally, we define
quota rules with exception as follows:

A quota rule with exception f : J n ! J is given by thresholdsmp,mq 2 {0, ..., n+
1} and an ‘exception domain’ E ✓ J n, and is defined as follows for all voting profiles
v 2 J n:

• if v 62 E then f(v) contains any proposition r in {p, q} if and only if nv
r � mr

(as for a regular quota rule),

• if v 2 E then f(v) = pq.

16These two minima are taken over non-empty sets of values of k (by the non-degeneracy assump-
tion at the end of Section 2.3).
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Figure 1: Illustration of Theorem 5: the decision as a function of the number of votes
for p and q

Equivalently, for any r in {p, q},

f(v) contains r if and only if [nv
r � mr or v 2 E ].17

Standard quota rules arise as special cases with an empty exception domain. In our
characterization theorem, the exception domain is E = {v : �(nv

p , n
v
q ) > 1/2}, so that

f(v) contains r , [nv
r � mr or �(nv

p , n
v
q ) > 1/2], for all r 2 {p, q} and v 2 J n. (8)

Theorem 5 Assume consequentialist preferences of type 2. A voting rule makes in-
formative voting e�cient and is monotonic and anonymous if and only if it is the
quota rule with exception (8) for some thresholds mp,mq such that �(mp, lq),�(lp,mq) >
1/2.

Figure 1 shows three voting rules of the kind given in Theorem 5. They di↵er
in the choice of the thresholds mp and mq. Figure 1(a) shows the generic case. In
Figure 1(b), the thresholds are chosen in a maximal way, i.e., mp = mq = n + 1.
As a result, the decisions pq̄ and p̄q are never taken, and the voting rule takes a
particularly simple form:

f(v) =

⇢
pq if �(nv

p , n
v
q ) > 1/2

p̄q̄ if �(nv
p , n

v
q )  1/2

(9)

for all voting profiles v 2 J n. In Figure 1(c), the thresholds are chosen in a minimal
way. That is, mp is the minimal number for which �(mp, lq) > 1/2; in short, mp is

17The notion of a quota rule with exception could be generalized by allowing the exception decision
to di↵er from pq. The exception decision is pq for us due to the privileged status of pq under
consequentialist preferences of type 2.
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chosen such that �(mp, lq) ⇡ 1/2, as illustrated by the figure. Similarly, mq is chosen
such that �(lp,mq) ⇡ 1/2. As a result, the voting rule takes the following form, as
the reader may check:

f(v) =

8
>><

>>:

pq if �(nv
p , n

v
q ) > 1/2

pq̄ if �(nv
p , n

v
q )  1/2 and �(nv

p , lq) > 1/2
p̄q if �(nv

p , n
v
q )  1/2 and �(lp, nv

q ) > 1/2
p̄q̄ otherwise.

(10)

This rule is special in that it reduces to the quota rule making informative voting
e�cient (defined in Theorem 4) whenever such a quota rule exists.

4 When is informative voting sincere?

While the previous section focuses on designing a voting rule, the present section does
not depend on the voting rule. We focus on a single voter and answer the question
of when informative voting is sincere, that is, when the naive strategy of ‘following
the evidence’ is worthwhile for a sincere voter. For each type of preference, we fully
characterize the parameter combinations for which this is so. We begin with simple
preferences.

Theorem 6 Under simple preferences, the informative voting strategy is sincere if
and only if ar̄

1�ar
� ⇡r

1�⇡r
� 1�ar̄

ar
for each r 2 {p, q}.

This result has an intuitive interpretation. We know that necessarily the upper
bound ar̄

1�ar
for ⇡r

1�⇡r
exceeds 1 and the lower bound 1�ar̄

ar
is below 1, since ar, ar̄ > 1/2.

For very high or very low values of the prior probabilities ⇡r, the ratio
⇡r

1�⇡r
is far from

1, so that one of the bounds is violated and informative voting is not sincere. This
makes sense since if voters have ‘strong’ prior beliefs, then the evidence collected
cannot overrule the prior beliefs: sincere votes cease to be sensitive to evidence,
i.e., depart from informative votes. By contrast, for less strong prior beliefs, the
inequalities are satisfied, so that informative voting is sincere, i.e., it is worth following
the evidence as a sincere voter.

Another useful perspective on the result is obtained by focusing not on the para-
meters ⇡r representing prior beliefs, but on the parameters ar and ar̄ representing
‘strength of evidence’. The larger ar and ar̄ are (i.e., the ‘stronger’ private evidence
for r and r̄ is), the greater the upper bound for ⇡r

1�⇡r
is and the smaller the lower

bound is, which makes it easier to meet both inequalities. In summary, su�ciently
strong evidence and/or su�ciently weak prior beliefs imply that it is worth voting
informatively (‘following the evidence’) as a sincere voter.

Surprisingly, the characterization remains the same as we move from simple pref-
erences to consequentialist preferences of type 1 (though the proof is quite di↵erent):

Theorem 7 Under consequentialist preferences of type 1, the informative voting
strategy is sincere if and only if ar̄

1�ar
� ⇡r

1�⇡r
� 1�ar̄

ar
for each r 2 {p, q}.
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One can interpret this result in a similar way as done for simple preferences.
Finally, we turn to consequentialist preferences of type 2. Here, the characteriza-

tion is based on the following three coe�cients:

A :=
⇡p

1� ⇡p
⇥ aq̄

1� aq
+

⇡q
1� ⇡q

⇥ 1� ap̄
ap

+
1� ap̄
ap

⇥ aq̄
1� aq

B :=
⇡p

1� ⇡p
⇥ 1� aq̄

aq
+

⇡q
1� ⇡q

⇥ ap̄
1� ap

+
ap̄

1� ap
⇥ 1� aq̄

aq

C :=
⇡p

1� ⇡p
⇥ 1� aq̄

aq
+

⇡q
1� ⇡q

⇥ 1� ap̄
ap

+
1� ap̄
ap

⇥ 1� aq̄
aq

.

Theorem 8 Under consequentialist preferences of type 2, the informative voting
strategy is sincere if and only if A,B � ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
� C.

Although the characterizing inequalities are more complicated than for the pre-
vious two kinds of preference, an interpretation in terms of strength of evidence is
again possible. If the voter’s evidence is su�ciently strong (i.e., if ap, ap̄, aq, aq̄ are
su�ciently close 1), then C is well below 1 and A and B are well above 1, so that
the inequalities are likely to hold; as a result, informative voting is sincere, i.e., it is
worth following the evidence as a sincere voter.
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A Generalization to an arbitrary number of issues

We have so far considered a two-issue agenda. But many of our results generalize to
an arbitrary number m 2 {1, 2, 3, ...} of issues. Such a generalization is of obvious
interest, firstly because it establishes the link with the traditional literature on jury
theorems, which considers m = 1 issue, and secondly because judgment aggregation
theory rarely limits the size of the agenda.

Let us be precise. Our results for simple preferences generalize smoothly to the m-
issue case (where for m = 1 issue we recover a key result by Austen-Smith and Banks
1996). For consequentialist preferences, the picture becomes more complicated, since
the number and structural complexity of possible consequence functions grows rapidly
withm, so that it does not su�ce to consider two types of consequentialist preferences.
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This is why, although our findings on consequentialist preferences do partly generalize
to them-issue case, these generalizations cover only a small portion of the large variety
of possible consequentialist preferences for m > 2 issues. For only m = 1 issue,
however, there essentially exists only one type of consequentialist preferences, which
coincides with simple preferences. We therefore limit our present m-issue analysis
to the case of simple preferences, while leaving consequentialist preferences to future
research.

We begin by generalizing our model. We consider a fixed number m 2 {1, 2, 3, ...}
of issues. For each issue j (2 {1, 2, ...,m}), the group needs to form a collective
judgment on whether a proposition pj or its negation p̄j is true. Each set {p⇤1, ..., p⇤m},
which for any issue j contains a proposition p⇤j from {pj , p̄j}, is a possible judgment
set. Let Jm be the set of possible judgment sets for our m-issue agenda. (Note that
if m = 2 then Jm is our earlier set J , with p1 = p and p2 = q.) A voting rule
f : J n

m ! Jm maps each voting profile v = (v1, ..., vn) 2 J n
m to a collective ‘decision’

d ⌘ f(v) 2 Jm. A quota rule is a voting rule defined by m thresholds hp1 , ..., hpm in
{0, 1, ..., n}, where, under any given voting profile, a proposition pj is accepted if and
only if at least hpj voters accept it.

There is an objective fact as to which propositions are true and which false:
exactly one (unknown) judgment set in Jm is ‘correct’; it is referred to as the state
and contains the ‘true’ propositions. Everyone aims for a correct collective decision.
Specifically, each voter holds the same preferences over decision-state pairs (d, s) 2
J 2
m, given by a common utility function u : J 2

m ! R. We focus on simple preferences,
defined by the utility function is given by

u(d, s) =

⇢
1 if d = s (correct decision)
0 if d 6= s (incorrect decision).

Each voter i receives a noisy private signal ti 2 Jm, his type; intuitively, it contains
the propositions for which the voter holds private evidence. A type profile is a vector
t = (t1, ..., tn) 2 J n

m. Nature draws a state-types combination (s, t) 2 Jm ⇥ J n
m

according to a probability measure denoted Pr.
Just as in the two-issue case, one defines the notions of an e�cient decision given

a type profile, a (voting) strategy, an informative strategy (or strategy profile), a
sincere strategy (or strategy profile), an e�cient strategy profile, and an equilibrium
strategy profile.

When a proposition r 2 {p1, p̄1, ..., pm, p̄m} is meant to represent part of voter i’s
type rather than part of the true state, we often write ri for r. By assumption, the
prior probability that r 2 {p1, p̄1, ..., pm, p̄m} is true is denoted

⇡r = Pr(r)

and belongs to (0, 1), and the probability of getting evidence for r 2 {p1, p̄1, ..., pm, p̄m}
given that r is true is denoted

ar = Pr(ri|r),

belongs to (1/2, 1), and does not depend on the voter i. Further, voters’ types are
independent conditional on the state, and in addition the state and the types w.r.t.
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any proposition are independent of the state and the types w.r.t. any other proposi-
tion. To avoid special cases, we exclude that some decision in Jm is not e�cient for
any type profile, and that some type profile leads to multiple e�cient decisions (i.e.,
an e�ciency tie).

The following two Theorems for simple preferences in the m-issue case generalize
Theorems 2 and 6 for the two-issue case as well as classic results by Austen-Smith
and Banks (1996) for the one-issue case. We first generalize our earlier coe�cients
‘kp’ and ‘kq’. For each proposition pj in {p1, ..., pm}, we define the coe�cient18

kpj := min

(
k 2 {0, 1, ..., n} :

⇡pj
1� ⇡pj

>

✓
1� ap̄j
apj

◆k ✓ ap̄j
1� apj

◆n�k
)
. (11)

Interpretationally, for the proposition pj to be more probably true than false given a
type profile, pj must occur at least kpj times in this type profile.

Theorem 9 Under simple preferences, informative voting is e�cient if and only if
the voting rule is the quota rule with thresholds kp1 , ..., kpm .

Theorem 10 Under simple preferences, the informative voting strategy is sincere if

and only if
ap̄j

1�apj
� ⇡pj

1�⇡pj
� 1�ap̄j

apj
for each j 2 {1, ...,m}.

Finally, Theorem 1 about an arbitrary kind of (common) preferences also gen-
eralizes to any number of issues. This theorem continues to hold as stated, simply
replacing ‘J ’ by ‘Jm’.

B Proofs

We begin by some preliminary derivations (Section B.1). We then prove the results
of the main in a new order obtained by clustering the results according to the kind
of preferences (Sections B.2-5). We finally prove the results of Appendix A (Section
B.6).

Conventions. Recall the notation ‘fr’ introduced in fn. 5 and the notation ‘S’
for the random variable generating the state s in J introduced in fn. 10. Double-
negations cancel each other out, i.e., p stands for p, and q for q. We refer to the two
technical assumptions made at the end of Section 2.3 as ‘non-degeneracy’ and ‘no
e�ciency ties’, respectively.

B.1 Preliminary derivations

The joint probability of a state-types vector (s, t) = (spsq, t1pt1q, ..., tnptnq) 2 J n+1

is

Pr(s, t) = Pr(s) Pr(t|s) = Pr(s)
Y

i

Pr(ti|s) = Pr(sp) Pr(sq)
Y

i

Pr(tip|sp) Pr(tiq|sq),

18Note that the minimum in (11) is taken over a non-empty set due to our non-degenaracy as-
sumption.
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where the last two equations follow from our independence assumptions. A voter’s
probability of a state s = psqs 2 J given his type t = ptqt 2 J is given by Pr(s|t) =
Pr(ps|pt) Pr(qs|qt), which reduces to

Pr(s|t) = ⇡psaps
⇡psaps + ⇡ps(1� aps)

⇥ ⇡qsaqs
⇡qsaqs + ⇡qs(1� aqs)

if ps = pt, qs = qt (12)

Pr(s|t) = ⇡psaps
⇡psaps + ⇡ps(1� aps)

⇥ ⇡qs(1� aqs)

⇡qs(1� aqs) + ⇡qsaqs
if ps = pt, qs 6= qt (13)

Pr(s|t) = ⇡ps(1� aps)

⇡ps(1� aps) + ⇡psaps
⇥ ⇡qsaqs

⇡qsaqs + ⇡qs(1� aqs)
if ps 6= pt, qs = qt (14)

Pr(s|t) = ⇡ps(1� aps)

⇡ps(1� aps) + ⇡psaps
⇥ ⇡qs(1� aqs)

⇡qs(1� aqs) + ⇡qsaqs
if ps 6= pt, qs 6= qt (15)

The probability of the four states in J conditional on the full information t 2J n is
given as follows, where k := nt

p and l := nt
q:

Pr(pq|t) =
⇡pakp(1� ap)n�k⇡qalq(1� aq)n�l

Pr(t)
(16)

Pr(pq̄|t) =
⇡pakp(1� ap)n�k⇡q̄(1� aq̄)la

n�l
q̄

Pr(t)
(17)

Pr(p̄q|t) =
⇡p̄(1� ap̄)ka

n�k
p̄ ⇡qalq(1� aq)n�l

Pr(t)
(18)

Pr(p̄q̄|t) =
⇡p̄(1� ap̄)ka

n�k
p̄ ⇡q̄(1� aq̄)la

n�l
q̄

Pr(t)
. (19)

B.2 General preferences

Proof of Theorem 1. (a) As mentioned, this part follows from McLennan (1998),
but for completeness we include a proof. We write Ti (= TipTiq) for the random
variable generating voter i’s type in J , and T = (T1, ..., Tn) for the random type
profile. Consider any voting rule f : J n ! J and any e�cient strategy profile
� = (�1, ...,�n). To show that � is an equilibrium, consider any voter i and type
ti 2 J . We have to show that i’s vote �i(ti) maximizes the expected utility conditional
on i’s type, i.e., that

E(u(f(�i(ti),��i(T�i)), S)|ti) � E(u(f(vi,��i(T�i)), S)|ti) for all vi 2 J ,

where (�i(ti),��i(T�i)) and (vi,��i(T�i)) of course denote the voting profiles in
which i votes vi resp. �i(ti) and each j 6= i votes �j(Tj). To show this, note that for
all vi 2 J ,

E(u(f(vi,��i(T�i)), S)|ti) =
X

t�i2J n�1

Pr(t�i|ti)E(u(f(vi,��i(t�i)), S)|ti, t�i)


X

t�i2J n�1

Pr(t�i|ti)E(u(f(�i(ti),��i(t�i)), S)|ti, t�i)

= E(u(f(�i(ti),��i(T�i)), S)|ti),
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where the inequality holds because the strategy profile (�i,��i) = � is e�cient for
the type profile (ti, t�i) = t.

(b) Since by (16)-(19) the conditional distribution of the state given full inform-
ation t 2 J n depends on t only via the numbers nt

p and nt
q, so does the condi-

tional expected utility of each decision, and hence, the set of e�cient decisions. For
each (k, l) 2 {0, 1, ..., n}2, let F (k, l) 2 J be a decision that is e�cient for some
(hence, every) t 2 J n for which nt

p = k and nt
q = l. The voting rule f defined by

v 7! f(v) = F (nv
p , n

v
q ) is clearly anonymous and renders informative voting e�cient.

⇤

B.3 Simple preferences

Although Theorems 2 and 6 about simple preferences are later generalized to the
multi-issue case, we give direct proofs of these theorems; this is helpful since the
two-issue case is more concrete and elementary than the general m-issue case.

We begin by two lemmas.

Lemma 1 Assume simple preferences. The expected utility of a decision d 2 J is

E(u(d, S)) = Pr(S = d),

and the conditional expected utility of d given a type or a type profile is given by the
analogous expression with a conditional probability instead of an unconditional one.

Proof. The claim follows immediately from the definition of the utility function. ⇤

The next lemma invokes the coe�cients kp and kq defined in (3) and (4).

Lemma 2 Assume simple preferences. For all type profiles t 2 J n, all r 2 {p, q},
and all decisions d, d0 2 J such that d but not d0 contains r, and d and d0 share the
other proposition,

E(u(d, S)|t) > E(u(d0, S)|t) , nt
r � kr.

Proof. Let t 2 J n. We first prove the equivalence for r = p, d = pq and d0 = p̄q.
By the definition of kp, the inequality nt

p � kp is equivalent to

⇡p
1� ⇡p

>

✓
1� ap̄
ap

◆nt
p
✓

ap̄
1� ap

◆n�nt
p

, (20)

which by (16) and (18) is equivalent to Pr(pq|t) > Pr(p̄q|t), and hence by Lemma 1
to E(u(pq, S)|t) > E(u(p̄q, S)|t). Next, suppose r = p, d = pq̄ and d0 = p̄q̄. Using
(17) and (19), the inequality (20) is equivalent to Pr(pq̄|t) > Pr(p̄q̄|t), and hence, to
E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t). The proof for the remaining cases is analogous. ⇤

We are now in a position to prove the two theorems about simple preferences.

Proof of Theorem 2. Consider a rule f : J n ! J .
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A. First, assume f is the quota rule with thresholds kp and kq. Consider a given
type profile t 2 J n. Supposing that voters vote informatively, the resulting voting
profile is v = t. We have to show that the decision d := f(v) is e�cient for t, i.e.,
that (*) E(u(d, S)|t) > E(u(d0, S)|t) for all d0 2 J \{d}. (We use ‘>’ rather than
‘�’ in (*) because of our ‘no e�ciency ties’ assumption.) The property (*) follows
from Lemma 2. For instance, if d = pq, then by definition of f we have nt

p � kp and
nt
q � kq, so that Lemma 2 implies the inequality in (*) for d0 = p̄q and d0 = pq̄
For instance, if d = pq, then by definition of f we have nt

p � kp and nt
q � kq, so

that Lemma 2 implies that

E(u(pq, S)|t) > E(u(p̄q, S)|t), E(u(pq̄, S)|t) > E(u(p̄q̄, S)|t),

which in turn implies (*); and if d = p̄q̄, then nt
p < kp and nt

q < kq, so that Lemma 2
implies that

E(u(p̄q̄, S)|t) > E(u(pq̄, S)|t), E(u(p̄q, S)|t) > E(u(pq, S)|t),

which again implies (*).
B. Conversely, suppose informative voting is e�cient under f . We consider any

v 2 J n and r 2 {p, q}, and must show that (**) fr(v) = r , nv
r � kr. Consider

the type profile t = v. Since informative voting is e�cient, the decision d = f(v)
is e�cient for t (= v), i.e., satisfies condition (*) above. Lemma 2 and (*) together
imply (**). For instance, if f(v) = pq, then (**) holds because, firstly, fr(v) = r,
and secondly, nv

r � kr by (*) and Lemma 2. ⇤

Proof of Theorem 6. A. First, assume informative voting is sincere. Equivalently,
for any given type t 2 J , E(u(d, S)|t) is maximal at d = t, i.e., by Lemma 1 (*) Pr(d|t)
is maximal at d = t. Applying (*) to type t = pq, we have Pr(pq|t) � Pr(p̄q|t), which
implies ⇡p

1�⇡p
� 1�ap̄

ap
by (12) and (14). Now applying (*) to type t = p̄q̄, we obtain

Pr(p̄q̄|t) � Pr(pq̄|t), which by (12) and (14) implies ap̄
1�ap

� ⇡p

1�⇡p
. We have shown

both inequalities relating to p. The two inequalities relating to q can be proved
analogously.

B. Now suppose ar̄
1�ar

� ⇡r
1�⇡r

� 1�ar̄
ar

for each r 2 {p, q}. We consider any type
t 2 J and have to show that the decision d = t has maximal expected utility given t,
or equivalently, that (*) holds.

We show (*) first in the case t = pq. Here, the inequality ⇡p

1�⇡p
� 1�ap̄

ap
implies

Pr(pq|t) � Pr(p̄q|t) by (12) and (14), and it implies Pr(pq̄|t) � Pr(p̄q̄|t) by (13) and
(15). Further, the inequality ⇡q

1�⇡q
� 1�aq̄

aq
implies Pr(pq|t) � Pr(pq̄|t) by (12) and

(13). This shows (*) for t = pq.
Now we show (*) for the case t = pq̄. As ⇡p

1�⇡p
� 1�ap̄

ap
, we here have Pr(pq̄|t) �

Pr(p̄q̄|t) by (12) and (14), and we have Pr(pq|t) � Pr(p̄q|t) by (13) and (15). As
aq̄

1�aq
� ⇡q

1�⇡q
, we also have Pr(pq̄|t) � Pr(pq|t) by (12) and (13). This proves (*) for

t = pq̄.
By similar arguments, one shows (*) for t = p̄q and for t = p̄q̄. ⇤
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B.4 Consequentialist preferences: type 1

We begin by two lemmas, which are the counterparts of Lemmas 1 and 2 for the
current preferences.

Lemma 3 Assume consequentialist preferences of type 1. The expected utility of a
decision d 2 J is

E(u(d, S)) =

⇢
Pr(pq) + Pr(p̄q̄) if d 2 {pq, p̄q̄}
Pr(pq̄) + Pr(p̄q) if d 2 {pq̄, p̄q},

and the conditional expected utility of d given a type or a type profile is given by the
analogous expression with conditional probabilities instead of unconditional ones.

Proof. The claim follows easily from the definition of the utility function. ⇤

Lemma 4 Assume consequentialist preferences of type 1. For each type profile t 2
J n and decisions d 2 {pq, p̄q̄} and d0 2 {pq̄, p̄q}

E(u(d, S)|t) > E(u(d0, S)|t) , [nt
r � kr for both or no r 2 {p, q}].

Proof. Consider any t 2 J n, d 2 {pq, p̄q̄} and d0 2 {pq̄, p̄q}. Define gr(k) :=
⇡rakr (1�ar)n�k and gr̄(k) := (1�⇡r)(1�ar̄)ka

n�k
r̄ for all r 2 {p, q} and k 2 R. For each

r 2 {p, q}, the definition of kr can now be rewritten as kr = min{k 2 {0, 1, ..., n+1} :
gr(k) > gr̄(k)}. So, (*) for each k 2 {0, 1, ..., n+ 1}, k � kr , gr(k) > gr̄(k). (Here,
the implication ‘)’ uses that gr(k) [gr̄(k)] is strictly increasing [decreasing] in k 2 R.)
Now,

E(u(d, S)|t) > E(u(d0, S)|t)
, Pr(pq|t) + Pr(p̄q̄|t) > Pr(pq̄|t) + Pr(p̄q|t) by Lemma 3
, gp(nt

p)gq(n
t
q) + gp̄(nt

p)gq̄(n
t
q) > gp(nt

p)gq̄(n
t
q) + gp̄(nt

p)gq(n
t
q) by (16)-(19)

,
⇥
gp(nt

p)� gp̄(nt
p)
⇤ ⇥
gq(nt

q)� gq̄(nt
q)
⇤
> 0

, [nt
r � kr for both or no r 2 {p, q}] by (*). ⇤

We can now prove our two theorems about the present preferences.

Proof of Theorem 3. Consider a rule f : J n ! J .
A. Assume f is the quota rule with thresholds kp and kq. Firstly, f is monotonic.

Secondly, to show that informative voting is e�cient, consider a given type profile
t 2 J n. Supposing informative voting, the resulting voting profile is then v := t.
We have to show that d := f(v) is e�cient for t, i.e., that for each d0 2 J with
Co(d0) 6= Co(d) we have (*) E(u(d, S)|t) � E(u(d0, S)|t). Consider any d0 2 J with
Co(d0) 6= Co(d). If d = pq, then nt

r � kr for both r 2 {p, q}, implying (*) by Lemma
4. If d = p̄q̄, then nt

r � kr for no r 2 {p, q}, again implying (*) by Lemma 4. Finally,
if d is p̄q or pq̄, then nt

r � kr for exactly one r 2 {p, q}, so that (*) holds once again
by Lemma 4.
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B. Conversely, assume f is monotonic and makes informative voting e�cient. We
consider any v 2 J n and must show that (**) fr(v) = r , nv

r � kr for each
r 2 {p, q}. As one can show using our non-degeneracy assumption,

kr 62 {0, n+ 1} for some r 2 {p, q}; (21)

for instance, if kr were zero for each r 2 {p, q}, then by Lemma 4 the decisions p̄q
and pq̄ would be ine�cient for each type profile, violating non-degeneracy. We now
prove (**) by distinguishing four cases.

Case 1 : nv
r � kr for each r 2 {p, q}. We must show that f(v) = pq. Since the

decision f(v) is e�cient for the type profile t = v, by Lemma 4, f(v) 2 {pq, p̄q̄}.
Suppose for a contradiction f(v) = p̄q̄. By (21), kr � 1 for some r 2 {p, q}. Suppose
kp > 0 (the case that kq > 0 being analogous). Let v0 be the voting profile obtained
from v by replacing each occurring p by p̄. By monotonicity, the decision is f(v0) = p̄q̄.
By Lemma 4, for the type profile t0 = v

0 only p̄q and pq̄ are e�cient since nt0
p = 0 < kp

and nt0
q = nv

q � kq. So, the decision f(v0) (= p̄q̄) is ine�cient, a contradiction since
f makes informative voting e�cient.

Case 2 : nv
p � kp and nv

q < kq. We must show that f(v) = pq̄. By Lemma 4,
pq̄ and p̄q are both e�cient for the type profile t = v. So, as informative voting is
e�cient, f(v) 2 {pq̄, p̄q}. Suppose for a contradiction f(v) = p̄q. By (21), kp > 0
or kq  n. First, if kp > 0, define v

0 as in Case 1. By monotonicity, the decision is
f(v0) = p̄q, which is ine�cient for the type profile t0 = v

0 by Lemma 4 as nt0
p = 0 < kp

and nt0
q = nv

q < kq, a contradiction. Second, if kq  n, define v

0 as the voting profile
obtained from v by replacing each occurring q̄ by q. By monotonicity, the decision
is f(v0) = p̄q, which is again ine�cient for the type profile t

0 = v

0 by Lemma 4 as
nt0
p = nv

p � kp and nt0
q = n � kq, a contradiction.

Case 3 : nv
p < kp and nv

q � kq. One can show that f(v) = p̄q like in Case 2.
Case 4 : nv

r < kr for each r 2 {p, q}. We must show that f(v) = p̄q̄. By
informative voting being e�cient and by Lemma 4 applied to t = v, f(v) 2 {pq, p̄q̄}.
Suppose for a contradiction that f(v) = pq. By (21), kr  n for some r 2 {p, q}.
We assume that kp  n (the proof being analogous if kq  n). Let the voting profile
v

0 2 J n arise from v by replacing each occurring p̄ by p. By monotonicity, f(v0) = pq.
This outcome is ine�cient for the type profile t

0 = v

0 by Lemma 4 and nt0
p = n � kp

and nt0
q = nv

q < kq. ⇤

Proof of Theorem 7. A. First, let informative voting be sincere. Equivalently, for
any type t 2 J , (*) E(u(d, S)|t) is maximal at d = t. Using (*) with t = pq, we have
E(u(pq, S)|t) � E(u(p̄q, S)|t), which by Lemma 3 is equivalent to Pr(pq|t)+Pr(p̄q̄|t) �
Pr(pq̄|t) + Pr(p̄q|t). Using (12)-(15), the latter is equivalent to

⇡p
1� ⇡p

⇥ ⇡q
1� ⇡q

+
1� ap̄
ap

⇥ 1� aq̄
aq

� ⇡p
1� ⇡p

⇥ 1� aq̄
aq

+
⇡q

1� ⇡q
⇥ 1� ap̄

ap
,

which can be rearranged as
✓

⇡p
1� ⇡p

� 1� ap̄
ap

◆✓
⇡q

1� ⇡q
� 1� aq̄

aq

◆
� 0. (22)
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Analogously, using (*) three more times, with t = pq̄, then t = p̄q and finally t = p̄q̄,
we obtain

✓
⇡p

1� ⇡p
� 1� ap̄

ap

◆✓
1� ⇡q
⇡q

� 1� aq
aq̄

◆
� 0 (23)

✓
⇡p

1� ⇡p
� ap̄

1� ap

◆✓
1� ⇡q
⇡q

� aq
1� aq̄

◆
� 0 (24)

✓
⇡p

1� ⇡p
� ap̄

1� ap

◆✓
⇡q

1� ⇡q
� aq̄

1� aq

◆
� 0. (25)

Firstly, (i) ⇡q

1�⇡q
� 1�aq̄

aq
, since otherwise by (22) we would get ⇡p

1�⇡p
 1�ap̄

ap
(< 1),

whereas by (24) we get ⇡p

1�⇡p
� ap̄

1�ap
(> 1), a contradiction. Secondly, (ii) ⇡p

1�⇡p
�

1�ap̄
ap

, because if (i) holds with a strict inequality, then (ii) follows from (22), whereas

if (i) holds with equality, then ⇡q

1�⇡q
< 1 < aq̄

1�aq
, which together with (23) implies

(ii). We finally show that (iii) ⇡p

1�⇡p
 ap̄

1�ap
and (iv) ⇡q

1�⇡q
 aq̄

1�aq
. First, suppose (ii)

holds with equality. Then ⇡p

1�⇡p
< 1 < ap̄

1�ap
, which implies (iii), and with (25) also

implies (iv). Second, suppose (ii) holds with a strict inequality. Then with (23) we
get (iv). If (iv) holds with a strict inequality, then we get (iii) by (25), while if (iv)
holds with equality, then 1�⇡q

⇡q
= 1�aq

aq̄
< 1 < aq

1�aq̄
, which by (24) implies (iii).

B. Conversely, assume ar̄
1�ar

� ⇡r
1�⇡r

� 1�ar̄
ar

for each r 2 {p, q}. We have to
show that informative voting is sincere, i.e., that (*) holds for each type t 2 J .
As one can check, the inequalities (22)-(25) all hold. These inequalities imply that
(*) holds for each type t 2 J . For instance, as shown in part A, (22) reduces to
E(u(pq, S)|t) � E(u(p̄q, S)|t) for t = pq. ⇤

B.5 Consequentialist preferences: type 2

We begin by a simple lemma, the counterpart of Lemmas 1 and 3.

Lemma 5 Assume consequentialist preferences of type 2. The expected utility of a
decision d 2 J is

E(u(d, S)) =

⇢
Pr(pq) if d = pq
1� Pr(pq) if d 6= pq,

and the conditional expected utility of d given a type or a type profile is given by the
analogous expression with conditional probabilities instead of unconditional ones.

Proof. The claim follows from the specification of the utility function. ⇤

We now prove our results about the current preferences. Some proofs implicitly
extend �(k, l) to values of k.l not in {0, ..., n}, using the expression (5).

Proof of proposition 1. The claim can easily be shown by elaborating the in-
formal argument given in the text. ⇤

Proof of theorem 4. A. First, suppose f : J n ! J is a quota rule with thresholds
mp and mq making informative voting e�cient. The following claims must be shown.
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Claim 1 : mp = lp and mq = lq.
Consider a type profile t 2J n for which nt

p = n and nt
q = lq. Assuming informative

voting, the resulting voting profile is v = t. By definition of lq, �(n, lq) > 1/2. So
f(v) = pq by Proposition 1. Thus, lq � mq by definition of f . One analogously shows
that lp � mp. To show the converse inequalities, consider a voting profile v 2 J n for
which nv

p = mp and nv
q = n (� mq). The resulting decision is f(v) = pq by definition

of f . So, by Proposition 1, �(nv
p , n

v
q ) = �(mp, n) > 1/2. Hence, mp � lp by definition

of lp. Analogously, one shows that mq � lq.
Claim 2 : �(lp, lq) > 1/2.
For any voting profile v 2 J n for which nv

p = lp (= mp) and nv
q = lq (= mq),

we have f(v) = pq by definition of f , so that by Proposition 1 �(nv
p , n

v
q ) > 1/2, i.e.,

�(lp, lq) > 1/2.
B. Conversely, assume �(lp, lq) > 1/2. We show that the quota rule f with

thresholds lp and lq makes informative voting e�cient. We first prove that for all
k, l 2 {0, ..., n},

�(k, l) > 1/2 , [k � lp and l � lq]. (26)

Let k, l 2 {0, ..., n}. If k � lp and l � lq, then �(k, l) � �(lp, lq) > 1/2, where
the first inequality holds because � is increasing in each argument. If k < lp, then
�(k, l)  �(k, n)  1/2, where the last inequality holds by definition of lp (> k).
Analogously, if l  lq, then �(k, l)  1/2.

Now consider any type profile t 2 J n. Assuming informative voting, the resulting
voting profile is v = t. We have to show that the decision f(v) is e�cient for t (= v).
First, if nt

p � lp and nt
q � lq, the decision is f(v) = pq, which is e�cient by Proposition

1 since �(nt
p, n

t
q) > 1/2 by (26). Second, if nt

p < lp or nt
q < lq, the resulting decision

f(v) is in {p̄q, pq̄, p̄q̄}, which is e�cient by Proposition 1 since �(nt
p, n

t
q)  1/2 by

(26). ⇤

Proof of theorem 5. Consider a rule f : J n ! J . We repeatedly draw on the
fact that (*) �(k, l) is strictly increasing in each argument.

A. First, assume f is defined by (8) for thresholds mp and mq satisfying �(mp, lq),
�(lp,mq) > 1/2. Clearly, f is anonymous. To show that informative voting is e�cient,
it su�ces by Proposition 1 to prove that for all v 2 J n,

f(v) = pq , �(nv
p , n

v
q ) > 1/2. (27)

If �(nv
p , n

v
q ) > 1/2, then clearly f(v) = pq by (8). Conversely, assume f(v) = pq.

Then, by definition of f , either nv
r � mr for each r 2 {p, q}, or �(nv

p , n
v
q ) > 1/2.

In the second case, we are done. Now assume the first case. Since �(mp, lq) > 1/2,
we have �(mp, n) > 1/2 by (*), whence mp � lp by definition of lp. Using (*)
and that nv

p � mp � lp and nv
q � mq, we have �(nv

p , n
v
q ) � �(lp,mq). Moreover,

�(lp,mq) > 1/2 by definition of mq. So, �(nv
p , n

v
q ) > 1/2, which completes the proof

of (27).
It remains to show monotonicity of f . Take two voting profiles v,v0 2 J n such

that for all r 2 f(v), the voters who vote for r in v also vote for r in v

0.
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Case 1 : f(v) = pq. Then, �(nv
p , n

v
q ) > 1/2 by (27). Also, nv0

p � nv
p and nv0

q � nv
q ,

so that �(nv0
p , nv0

q ) � �(nv
p , n

v
q ) by (*). It follows that �(nv0

p , nv0
q ) > 1/2, so that

f(v0) = pq by (27).
Case 2 : f(v) = pq̄. We have to show that f(v0) = pq̄, i.e., that

nv0
p � mp, n

v0
q < mq, and �(nv0

p , nv0
q )  1/2. (28)

Since f(v) = pq̄, the definition of f implies nv
p � mp and nv

q < mq, and the definition

of v0 implies nv0
p � nv

p and nv0
q  nv

q ; hence, the first two inequalities in (28) hold. As
�(mp, lq) > 1/2 and nv

p � mp, we have �(nv
p , lq) > 1/2 by (*). Also, since f(v) = pq̄,

we have �(nv
p , n

v
q )  1/2 by (27). Hence, �(nv

p , n
v
q ) < �(nv

p , lq). So, nv
q < lq by (*),

whence nv0
q < lq as nv0

q  nv
q . Thus, by definition of lq, �(n, nv0

q )  1/2, so that

�(nv0
p , nv0

q )  1/2 by (*), proving (28).
Case 3 : f(v) = p̄q. One can show that f(v0) = p̄q analogously to Case 2.
Case 4 : f(v) = p̄q̄. Then, nv

p < mp, nv
q < mq, and �(nv

p , n
v
q )  1/2. We have to

show that f(v0) = p̄q̄, i.e., that these three inequalities still hold if v is replaced by
v

0. This follows from the fact that nv0
p  nv

p and nv0
q  nv

q (by definition of v0) and
from (*).

B. Conversely, let f be monotonic and anonymous, and make informative voting
e�cient. For each r 2 {p, q}, define

mr := min{nv
r : v 2 J n such that fr(v) = r and �(nv

p , n
v
q )  1/2},

where this minimum is interpreted as n+1 if it is taken over an empty set. We prove
that f has the required form with respect to the so-defined thresholds mp and mq.
The proof proceeds in several steps and is completed by Claims 5 and 6 below.

Claim 1 : For all v 2 J n, if nv
p � lp, nv

q � lq and �(nv
p , n

v
q )  1/2, then f(v) = p̄q̄.

Let v 2 J n satisfy the antecedent condition. First assume f(v) = pq̄ for a
contradiction. Let v0 be the voting profile obtained from v by replacing each p̄ by p.
By monotonicity, f(v0) = pq̄. However, Proposition 1 implies that f(v0) = pq, since
�(nv0

p , nv0
q ) = �(n, nv

q ) � �(n, lq) > 1/2 (where the first inequality holds by nv
q � lq,

and the second by definition of lq). This contradiction proves that f(v) 6= pq̄. One
similarly proves that f(v) 6= p̄q. So, as f(v) 2 {pq̄, p̄q, p̄q̄} by Proposition 1, we have
f(v) = p̄q̄, proving the claim.

Claim 2 : For all v 2 J n, if nv
p  lp, nv

q  lq and �(lp, lq)  1/2, then f(v) = p̄q̄.
Consider any v 2 J n satisfying the antecedent condition. Let w 2 J n arise from

v by replacing lp �nv
p occurrences of p̄ by p, lq �nv

q occurrences of q̄ by q. Note that
nw
p = lp and nw

q = lq, whence by Claim 1 f(w) = p̄q̄. By monotonicity, it follows
that f(v) = p̄q̄.

Claim 3 : mp � lp and mq � lq.
Suppose for a contradiction mp < lp. By definition of mp, there is a v 2 J n

such that mp = nv
p , fp(v) = p and �(nv

p , n
v
q )  1/2. As by Proposition 1, f(v) 2

{p̄q, pq̄, p̄q̄}, it follows that f(v) = pq̄. We consider two cases.
Case 1 : nv

q � lq. Let v

0 2 J n be the voting profile arising from v by replacing
each p̄ by p. By monotonicity, the resulting decision is f(v0) = pq̄. But f(v0) = pq by
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Proposition 1 as �(nv0
p , nv0

q ) = �(n, nv
q ) � �(n, lq) > 1/2 (where the first inequality

holds by nv
q > lq and the second by definition of lq).

Case 2 : nv
q < lq. Then by Claim 2 f(v) = p̄q̄, a contradiction since f(v) = pq̄.

We have shown one inequality of Claim 3; the other one has an analogous proof.
Claim 4 : For all v 2 J n with �(nv

p , n
v
q )  1/2, if nv

p � mp then f(v) = pq̄, and
if nv

q � mq then f(v) = p̄q.
Consider any v 2 J n with �(nv

p , n
v
q )  1/2. Suppose for a contradiction that

nv
p � mp but f(v) 6= pq̄. Then, as by Proposition 1 f(v) 2 {p̄q, pq̄, p̄q̄}, either

f(v) = p̄q or f(v) = p̄q̄.
Case 1 : f(v) = p̄q. Let v0 2 J n be the voting profile arising from v by replacing

each q̄ by q. By monotonicity, the resulting decision is f(v0) = p̄q, whereas by
Proposition 1 f(v0) = pq because �(nv0

p , nv0
q ) = �(nv

p , n) � �(lp, n) > 1/2, where the
first inequality holds because nv

p � lp (by Claim 3) and the second inequality holds
by definition of lp.

Case 2 : f(v) = p̄q̄. By definition of mp there is a w 2 J n such that nw
p = mp,

fp(w) = p and �(nw
p , n

w
q )  1/2. As by Proposition 1 f(w) 2 {pq̄, p̄q, p̄q̄}, it follows

that f(w) = pq̄. Let v0 [w0] be the voting profile arising from v [w] by replacing each
q by q̄. By monotonicity, f(v0) = p̄q̄ and f(w0) = pq̄. Now let w00 be a voting profile
arising from w

0 by replacing nv0
p � nw0

p (= nv
p �mp � 0) occurrences of p̄ by p. By

monotonicity, f(w00) = pq̄. So, f(w00) 6= f(v0), a contradiction by anonymity since
w

00 is a permutation of v0.
This shows the first implication in Claim 4. The second one can be shown similarly.
Claim 5 : �(mp, lq),�(lp,mq) > 1/2.
We only show that �(mp, lq) > 1/2; the other inequality is analogous. Suppose

for a contradiction that �(mp, lq)  1/2. So, since �(n + 1, lq) > �(n, lq) > 1/2 (by
definition of lq), we have mp 6= n + 1. Hence, there is a v 2 J n such that nv

p = mp

and nv
q = lq. By Claim 4, f(v) = pq̄. Let v

0 be the voting profile arising from v

by replacing each p̄ by p. By monotonicity, f(v0) = pq̄, a contradiction since by
Proposition 1 f(v0) = pq since �(nv0

p , nv0
q ) = �(n, lq) > 1/2.

Claim 6 : f is given by (8).
Consider any v 2 J n and r 2 {p, q}. We show the equivalence (8) by dis-

tinguishing di↵erent cases. If �(nv
p , n

v
q ) > 1/2, then f(v) = pq by Proposition 1,

implying (8). If �(nv
p , n

v
q )  1/2 and nv

r � mr, then (8) holds by Claim 4. Finally, if
�(nv

p , n
v
q )  1/2 and nv

r < mr, then fr(v) 6= r by definition of mr, whence (8) again
holds. ⇤

Proof of Theorem 8. A. First, suppose informative voting is sincere. Equivalently,
for any given type t 2 J , the decision d = t has maximal conditional expected
utility, i.e., (*) E(u(d, S)|t) is maximal at d = t. Applying (*) with t = pq, we have
E(u(pq, S)|t) � E(u(p̄q̄, S)|t), which by Lemma 5 reduces to Pr(pq|t) � 1� Pr(pq|t),
i.e., to Pr(pq|t) � 1/2. Using (12), one derives that ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
� C. Now applying

(*) with t = pq̄, we have E(u(pq̄, S)|t) � E(u(pq, S)|t), which by Lemma 5 reduces to
1�Pr(pq|t) � Pr(pq|t), so that Pr(pq|t)  1/2. Using (13), one obtains ⇡p

1�⇡p
⇥ ⇡q

1�⇡q


A. Finally, applying (*) with t = p̄q, we have E(u(p̄q, S)|t) � E(u(pq, S)|t), which
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by Lemma 5 reduces to 1� Pr(pq|t) � Pr(pq|t), whence Pr(pq|t)  1/2. Using (14),
one derives ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
 B. This proves all inequalities.

B. Conversely, suppose A,B � ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
� C. For each given type t 2 J , one

has to show (*). As the reader can verify using Lemma 5 and (12)-(15), if t = pq then
(*) follows from ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
� C; if t = pq̄ then (*) follows from A � ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
; if

t = p̄q then (*) follows from B � ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
; and if t = p̄q̄ then (*) can be derived

from A � ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
or from B � ⇡p

1�⇡p
⇥ ⇡q

1�⇡q
. ⇤

B.6 An arbitrary number of issues

In this subsection, we assume the generalized model of Appendix A, with m (2
{1, 2, 3, ..., } issues. To prove Theorem 9, we begin with a lemma. As in the two-issue
case, we write ‘S’ for the random variable generating the state, and nt

r for the number
of types in type profile t (2 J n

m) which contain proposition r (2 {p1, p̄1, ..., pm, p̄m}).
This latter notation can also be used with a voting profile v instead of a type profile
t.

Lemma 6 Under simple preferences, for all type profiles t 2 J n
m and decisions d, d0 2

Jm, E(u(d, S)|t) > E(u(d0, S)|t) if and only if
Y

r2d
⇡ra

nt
r

r (1� ar)
n�nt

r >
Y

r2d0
⇡ra

nt
r

r (1� ar)
n�nt

r . (29)

Proof. Assume simple preferences and consider any t 2 J n
m. One easily shows that

for all d 2 Jm

E(u(d, S)|t) = Pr(S = d|t) =
Y

r2d

⇡ra
nt
r

r (1� ar)n�nt
r

Pr(t)
.

This implies the claimed equivalence. ⇤

Proof of Theorem 9. Consider a voting rule f : J n
m ! Jm.

A. First, assume that f is the quota rule with thresholds kp1 , ..., kpm . Take any
type profile t and suppose informative voting. Then the resulting voting profile is
v = t. We show that d := f(v) is the only e�cient decision for t, i.e., that (*)
E(u(d, S)|t) > E(u(d0, S)|t) for all d0 2 Jm \ {d}. For all issues j, if pj 2 d, then
nv
pj = nt

pj � kpj , so that by (11)

⇡pja
nt
pj

pj (1� apj )
n�nt

pj > ⇡p̄ja
n�nt

pj
p̄j (1� ap̄j )

nt
pj ,

or in other words (since n� nt
pj = nt

p̄j )

⇡pja
nt
pj

pj (1� apj )
n�nt

pj > ⇡p̄ja
nt
p̄j

p̄j (1� ap̄j )
n�nt

p̄j ;

while if p̄j 2 d, then nv
p̄j = nt

p̄j < kpj , so that by (11)

⇡pja
nt
pj

pj (1� apj )
n�nt

pj < ⇡p̄ja
n�nt

pj
p̄j (1� ap̄j )

nt
pj ,
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i.e.,

⇡p̄ja
nt
p̄j

p̄j (1� ap̄j )
n�nt

p̄j > ⇡pja
nt
pj

pj (1� apj )
n�nt

pj .

In summary, for all r 2 d (whether of the form pj or p̄j), we have

⇡ra
nt
r

r (1� ar)
n�nt

r > ⇡r̄a
nt
r̄

r̄ (1� ar̄)
n�nt

r̄ .

It follows that for all d0 2 Jm\{d} we have

Y

r2d
⇡ra

nt
r

r (1� ar)
n�nt

r >
Y

r2d0
⇡ra

nt
r

r (1� ar)
n�nt

r ,

i.e., E(u(d, S)|t) > E(u(d0, S)|t) by Lemma 6. This proves (*).
B. Now suppose informative voting is e�cient under f . Consider any voting profile

v 2 J n
m and issue j 2 {1, ...,m}; we must show that (**) pj 2 f(v) if and only if

nv
pj � kpj . Since informative voting is e�cient, d := f(v) is e�cient for the type

profile t := v. In fact, d is the only e�cient decision for t by our ‘no ties’ assumption.
So, any other decision d0 2 Jm\{d} yields a lower expected utility given t than d, i.e.,
E(u(d, S)|t) > E(u(d0, S)|t), which by Lemma 6 implies that

Y

r2d
⇡ra

nt
r

r (1� ar)
n�nt

r >
Y

r2d0
⇡ra

nt
r

r (1� ar)
n�nt

r .

If we apply this inequality to the case that d0 di↵ers from d only on the jth issue (i.e.,
d4 d0 = {pj , p̄j}), then after cancellation the inequality simplifies to

⇡pja
nt
pj

pj (1� apj )
n�nt

pj > (<)⇡p̄ja
nt
p̄j

p̄j (1� ap̄j )
n�nt

p̄j if pj 2 ( 62) d.

After replacing nt
p̄j by n� nt

pj on the right hand side, it follows that

⇡pja
nt
pj

pj (1� apj )
n�nt

pj > ⇡p̄ja
n�nt

pj
p̄j (1� ap̄j )

nt
pj , pj 2 d.

This entails (**), since by (11) the left hand side of this equivalence holds if and only
if nt

pj � kpj , where t = v. ⇤

Proof of Theorem 10. A voter’s probability of a state s 2 Jm given his type
t 2 Jm is given by the following equation:

Pr(s|t) =
Y

r2t\s

⇡rar
⇡rar + ⇡r̄(1� ar̄)

⇥
Y

r2t\s

⇡r(1� ar)

⇡r(1� ar) + ⇡r̄ar̄
(30)

Based on this expression, it is straightforward to generalize our earlier proof for the
two-issue case (Theorem 6) to the current m-issue case. ⇤

32


