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Abstract

Following Vartiainen (2007) we consider bargaining problems in which no
exogenous disagreement outcome is given. A bargaining solution assigns
a pair of outcomes to such a problem, namely a compromise outcome
and a disagreement outcome: the disagreement outcome may serve as
a reference point for the compromise outcome, but other interpretations
are given as well. For this framework we propose and study an extension
of the classical Kalai-Smorodinsky bargaining solution. We identify the
(large) domain on which this solution is single-valued, and present two
axiomatic characterizations on subsets of this domain.
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1 Introduction

In the bargaining problem of Nash (1950) each player can unilaterally enforce
the disagreement outcome if negotiations fail. In some cases, however, it may
not be clear what the disagreement outcome is or whether the players can, or
want to, enforce it if agreement is not reached. In the classical example of
employer-union wage negotiations the union can call out a strike if it is not
satisfied with the wage offered by the employer. But how long should the strike
last? What will be its consequences? Will all workers join? Are there perhaps
different and better ways to put pressure on management? Also, which outcome
can the employer enforce, if any, in case no agreement is reached?
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In this paper, following Vartiainen (2007), we assume that the disagree-
ment outcome is determined endogenously, namely by the bargaining solution.
Specifically, the bargaining solution assigns a pair of outcomes, namely a com-
promise outcome and a disagreement outcome. The possible interpretations of
such a bargaining solution are parallel to the usual interpretations of a classical
bargaining solution in the situation where the disagreement outcome is exoge-
nous. From a positive point of view, a classical bargaining solution predicts or
describes the compromise outcome, i.e., it tells us what this outcome is given

that the players reach agreement. From this point of view, a bargaining solu-
tion in the situation without exogenous disagreement outcome predicts both the
compromise outcome for the case that the players reach an agreement, and the
disagreement outcome in the opposite case. From a normative point of view, a
classical bargaining solution functions like an outside arbitrator and proposes a
compromise outcome, but this outcome should be ‘reasonable’ given the exoge-
nous disagreement outcome. In the situation without exogenous disagreement
outcome, a bargaining solution proposes a compromise as well as a disagreement
outcome, such that the compromise is ‘reasonable’ when compared to the dis-
agreement outcome. We will refine and detail these interpretations in Section 2
below.

Within this framework, Vartiainen (2007) proposes and axiomatically char-
acterizes a bargaining solution which extends the classical Nash bargaining so-
lution for bargaining problems with fixed, exogenous disagreement point. That
solution maximizes the Nash product, i.e., the product of the gains of the players
from the compromise outcome over the disagreement outcome.

By contrast, the solution proposed in our paper depends explicitly on the
utopia point and extends the solution of Raiffa (1953) and Kalai-Smorodinsky
(1975) for classical bargaining problems. This extension works as follows. First,
the assigned compromise point is indeed the classical Kalai-Smorodinsky (KS)
outcome for the assigned disagreement outcome. That is, it is the Pareto optimal
point on the straight line joining this disagreement outcome and its associated
utopia point. Second, the assigned disagreement outcome is the point on the
straight line joining the assigned compromise point and the associated ‘anti-
utopia point’, obtained by taking the minimum utilities of the players below
the compromise point; it is, thus, a ‘converse’ KS outcome. The main original
condition justifying the classical Kalai-Smorodinsky solution is individual mono-
tonicity: it implies that if the utopia point stays fixed, then the players should
benefit from increased availability of favorable outcomes. In defining the KS
solution for the case where the disagreement outcome is not exogenous, we thus
apply the same logic also to the determination of the disagreement outcome:
given that the anti-utopia point does not change, the players should suffer from
the increased availability of unfavorable outcomes.

We present two axiomatic characterizations of this solution. In the first one,
the crucial axiom is called Independence of Non-Utopia information (INU). This
condition is relatively strong and, under an additional condition, says that the
compromise and disagreement outcomes in two different problems should be
the same if the associated utopia and anti-utopia points coincide. In the second
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characterization, INU is replaced by three much weaker axioms, including a
monotonicity condition.

Another extension of the Kalai-Smorodinsky solution to bargaining problems
without fixed disagreement point is proposed in Vartiainen (2002), but this
solution is quite different from our extension.1

The framework in our paper and in Vartiainen (2007) has resemblance to
the one in Thomson (1981), who also considers bargaining problems without
disagreement point. Thus, a bargaining problem is defined merely as a utility-
possibility set. Thomson introduces the notion of reference point as a function

of the bargaining problem.2 The key difference to the classical disagreement
point is that no player can unilaterally enforce the reference point. It may thus
serve, rather, as a hypothetical outcome to which the players compare proposals
made during negotiations. The key difference with our (and Vartiainen’s) ap-
proach is that we assume that also the reference point (disagreement outcome)
is determined by the solution.

In situations where an arbitrator, or a mediator, makes choices for the players
(cf. Luce and Raiffa, 1957), the reference point may also result from a nonco-
operative, strategic game between the players, and the arbitrator (bargaining
solution) assigns a compromise point based on the reference point. Effectively,
this way a noncooperative game is turned into a strictly competitive game which
may have a value, comparable to a zero-sum game. Such arbitration games have
received renewed attention recently, see Kalai and Kalai (2010).

In Section 2 we present a more detailed discussion of bargaining with en-
dogenous disagreement. In Section 3 we formally introduce the extended Kalai-
Smorodinsky solution, show that it is non-empty valued and characterize the
domain of bargaining problems for which it is single-valued. In Section 4 we
present two axiomatic characterizations of the solution on domains where it
is single-valued. We also show that the axioms in these characterizations are
independent.

All proofs are collected in the Appendix.

Notation For x, y ∈ R2, x > y means xi > yi and x > y means xi > yi for
i = 1, 2. Similarly for < and 6. By [x, y] we denote the line segment with
endpoints x and y. The cardinality of a set X ⊆ R2 is denoted by |X |. For
a, x ∈ R2, ax := (a1x1, a2x2), aX := {ax | x ∈ X}, and a+X := {a+x | x ∈ X}.
The set (−1,−1)X is also denoted by −X . By R2

+ we denote the (strictly)
positive quadrant of R2. By conv(X) we denote the convex hull of the set X .

1It assigns the points of intersection of the straight line connecting the global utopia and
anti-utopia points with the boundary of the feasible set and, thus, extends the Kalai-Rosenthal
(Kalai and Rosenthal, 1978) solution rather than the Kalai-Smorodinsky solution.

2Herrero (1998) considers endogenous reference points in so-called bargaining problems
with claims. Also these reference points are a function of the bargaining problem and, in this
case, the claims point.
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2 Bargaining with endogenous disagreement

A bargaining problem U is a compact and convex subset of R2 such that x > y
for some x, y ∈ U . Elements of U are called outcomes and represent the utilities
of two players. By U we denote the set of all bargaining problems.

A classical bargaining problem is a pair (U, d), where U ∈ U and d ∈ U ; the
outcome d is called the disagreement outcome, and it results if the players do not
reach agreement. By B we denote the set of all classical bargaining problems.
A classical bargaining solution is a map F : B → R2 with F (U, d) ∈ U for all
(U, d) ∈ B.

In contrast, a bargaining solution or, briefly, a solution is a correspondence
f : U → R2×R2 such that s, r ∈ U and s 6= r for all U ∈ U and (s, r) ∈ f(U). For
a pair (s, r) ∈ f(U), we call s the compromise outcome and r the disagreement

outcome.
We now discuss how solutions with endogenous disagreement can be in-

terpreted, also offering some perspectives that go beyond Vartiainen (2007).3

Classical bargaining theory commonly distinguishes between positive interpre-
tations, according to which bargaining solutions aim to predict the outcome of a
bargaining process, and normative interpretations, according to which solutions
express a judgment of what outcome would be normatively ‘best’ or ‘fairest’
and should therefore be proposed by an arbitrator or mediator if such a person
is appointed. Since our extended bargaining solutions return two outcomes –
a compromise outcome s and a disagreement outcome r – we may classify po-
tential interpretations according to which of the two outcomes are interpreted
positively (‘players’) and which normatively (‘mediator’). This yields four pos-
sible interpretations overall, see Table 1.

disagreement r

players mediator

players Case 1 Case 3

compromise s

mediator Case 2 Case 4

Table 1 Four potential interpretations of bargaining solutions

We discuss these cases in turn. In the ‘doubly positive’ Case 1, s is the predicted
compromise outcome of bargaining (without arbitration or mediation), and r
the predicted outcome failing agreement. Outcome r plays the role of players’
mental reference point, representing their common beliefs of what would happen
failing agreement. Both s and r are predicted to emerge as the result of the
bargaining process, in the course of which various proposals and threats might
have been on the table.4

Cases 2, 3 and 4 represent three variants of how a mediator could intervene
in the bargaining process. These variants are not merely hypothetical but can be

3This discussion has benefitted from helpful comments of an anonymous referee.
4Case 1 is perhaps closest to the idea of a reference point as in Thomson (1981).
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observed in practice. For instance, they correspond to different forms of so-called
Alternative Dispute Resolution (ADR). Especially in Anglo-Saxon common law
systems, ADR has become a wide-spread practice aimed to avoid costly and
lengthy court trials through reaching a compromise beforehand.5 While ADR
always assigns a central role to a so-called mediator, the exact nature of this
role differs across different forms of ADR. Bargaining theory with endogenous
disagreement allows one to study some existing forms of ADR in virtue of the
interpretations of Cases 2, 3 and 4. To understand why this is so, two pieces of
background information are worth noting. Firstly, the role of the mediator in
ADR does typically not consist in elaborating a binding compromise. Instead,
any compromise needs both parties’ approval. Should this compromise have
been proposed by the mediator, this proposal was non-binding. This marks
a key difference between ADR and orthodox forms of dispute resolution such
as court trials and arbitration; there, the role of the judge resp. arbitrator is
precisely to dictate a binding compromise.6 Secondly, prior to entering ADR
both parties have contractually agreed to the mediator’s precise role, whatever
this role consists in. So, parties cannot later withdraw from the ADR procedure,
and any threats or incentives placed by the mediator are credible in the game-
theoretic sense. Now we turn to the specific Cases 2, 3 and 4.

In Case 2, the mediator proposes a non-binding compromise s (after listening
to both parties, i.e., ‘learning’ the bargaining problem U at hand). This makes
s salient and externally approved. If both players accept s, it is implemented.
If the parties do not both accept the proposal and do not reach an alternative
compromise, the non-cooperative outcome r is predicted. So, r once again
operates as a reference point or ‘threat’, creating an incentive to accept the
proposal s (as long as s > r).

In Case 4, the mediator not just proposes a non-binding compromise, but
also underpins this proposal with the threat of forcing a ‘bad’ binding outcome
r on the parties (typically including sanctions or fines) which takes effect in the
eventuality that the players neither agree to s nor manage to reach an alternative
compromise. This of course presupposes that players have contractually autho-
rized the mediator to dictate a binding disagreement outcome (which players
may plausibly do to facilitate a compromise). Once the mediator has announced
r, players effectively face an exogenous disagreement outcome. While classical
bargaining theory can be used to model bargaining given the mediator’s an-
nounced r, we also address how r is determined.

Case 3 gives more responsibility to the parties: the mediator does not pro-
pose a compromise to the parties but mediates between them to help them find a
compromise by themselves. Just as in Case 4, to create an incentive to compro-

5The United Kingdom legislation strongly encourages, if not de facto forces, parties to
engage in an ADR process prior to meeting before court (since the 2004 judgment in the
Halsey landmark case). For general introductions to ADR, see for instance Lynch (2001) and
Blake et al. (2011).

6The difference between a court trial and arbitration is that the former is instituted by the
state, whereas the latter is based on a contractual agreement between both parties to submit
to an arbitration procedure.
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mise, the mediator imposes a binding outcome r (typically including sanctions
or fines) that takes effect if no compromise is reached.

We ultimately leave it to the reader which interpretation to prefer and which
applications to focus on. As with bargaining theory in general, the theory with
endogenous disagreement captures its intended applications only in a stylized
and simplified way. For instance, the model abstracts away certain goals of
ADR, such as the goal of inducing a change and ideally a convergence of the
parties’ preferences. We hope that the connection to ADR will motivate future
research and generalizations.

3 Bargaining problems and the extended Kalai-

Smorodinsky solution

In this paper we focus on a particular solution, which extends the classical
Kalai-Smorodinsky bargaining solution (Raiffa, 1953; Kalai and Smorodinsky,
1975). For a bargaining problem U ∈ U , the Pareto optimal set is the set

P (U) := {x ∈ U | for all y ∈ U , y > x implies y = x}
and the anti-Pareto optimal set is the set

AP (U) := {x ∈ U | for all y ∈ U , y 6 x implies y = x}.
The classical Kalai-Smorodinsky bargaining solution assigns to each classical
bargaining problem (U, d) the unique point KS(U, d) ∈ P (U) on the straight
line through d and the utopia point

u(U, d) =

(
max

x∈U, x>d
x1, min

x∈U, x>d
x2

)
.

The extended Kalai-Smorodinsky solution is the correspondence k : U → R2×R2

defined by

(s, r) ∈ k(U) ⇔ s = KS(U, r), r = −KS(−U,−s) and s 6= r

for all U ∈ U and s, r ∈ U . Thus, (s, r) ∈ k(U) exactly if the following three
conditions are satisfied: (i) s 6= r; (ii) s is the classical Kalai-Smorodinsky
outcome when r is viewed as the disagreement outcome; and (iii) r results
similarly from s when we reverse the problem or, equivalently, r is the unique
point in AP (U) on the straight line through s and the anti-utopia point

a(U, s) :=

(
min

x∈U, x6s
x1, min

x∈U, x6s
x2

)
.

See Figure 1 for an illustration.
Our first result is that the extended Kalai-Smorodinsky solution is non-

empty valued. The proof is based on an elementary fixed point argument,
slightly complicated by the fact that the Pareto and anti-Pareto optimal sets of
a bargaining problem U may have one or both endpoints in common. Clearly,
in that case, by definition of k – in particular the condition s 6= r – such an
endpoint cannot be the solution outcome.
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Figure 1: An illustration of the extended Kalai-Smorodinsky solution

Theorem 3.1 k(U) 6= ∅ for all U ∈ U .

We note that k does not have to assign a unique pair of outcomes to a
bargaining problem. For instance, let U be the convex hull of the points (6, 0),
(8, 0), (0, 6), and (0, 8). Then it is not difficult to check that

k(U) = {((s1, s2), (r1, r2)) | 2 6 s1 6 6, r1 = s1 − 1, s1 + s2 = 8, r1 + r2 = 6}.

In this example the Pareto optimal and anti-Pareto optimal sets are parallel
line segments. In fact, a sufficient but not necessary condition for k to assign a
unique pair of outcomes to a problem U is that P (U) and AP (U) do not contain
parallel line segments. Theorem 3.2 below provides an exact description of the
class of all bargaining problems on which k is unique. We first introduce some
additional terminology.

For x 6= y and x′ 6= y′ the line segments [x, y] and [x′, y′] are parallel if the
straight lines ℓ and ℓ′ containing these line segments are parallel. In that case,
the vertical distance between [x, y] and [x′, y′] is the number v = |z2 − z′2| for
(any) z ∈ ℓ and z′ ∈ ℓ′ with z1 = z′1; v is infinite if ℓ and ℓ′ are vertical. Similarly,
the horizontal distance between [x, y] and [x′, y′] is the number h = |z1 − z′1| for
(any) z ∈ ℓ and z′ ∈ ℓ′ with z2 = z′2; h is infinite if ℓ and ℓ′ are horizontal.

Now let Dk denote the set of bargaining problems U with |k(U)| = 1.

Theorem 3.2 Let U ∈ U . Then U ∈ Dk if and only if there are no parallel

line segments [x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) with x̄1 < x1 and ȳ1 < y
1

and

such that the vertical distance v and horizontal distance h between these line

segments satisfy the following conditions:

(i) 1
2v = ȳ2 − x̄2 = y

2
− x2,

(ii) the lengths7 of [x̄, x] and [ȳ, y] both exceed
√

h2 + v2.

See Figure 3 in the Appendix for an illustration. The theorem implies that
we do not lose much generality if we restrict attention to domains of bargaining

7The length of a line segment is the Euclidean distance between its endpoints.
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problems within Dk. We conclude this section with a remark, listing some
domains on which k is single-valued.

Remark 3.3 Theorem 3.2 implies that the extended Kalai-Smorodinsky solu-
tion k is single-valued on each of the following domains:

(a) {U ∈ U | U is strictly convex}.

(b) {U ∈ U | AP (U) or P (U) contains no line segment}.

(c) {U ∈ U | no line segments S ⊆ AP (U) and S′ ⊆ P (U) are parallel}.

Clearly, the domain in (a) is a subset of the domain in (b), which in turn is a
subset of the domain in (c).

4 Two axiomatic characterizations of the extend-

ed Kalai-Smorodinsky solution

In this section we give two axiomatic characterizations of the extended Kalai-
Smorodinsky solution k on domains on which k is single-valued. In each char-
acterization all axioms except one are basic and shared with the extended Nash
solution. In the first characterization the additional axiom is an informational
constraint (Independence of Non-Utopia Information), while in the second it is
a monotonicity property analogous to such properties used in characterizations
of the classical Kalai-Smorodinsky solution.

We formulate our conditions for a solution f defined on a domain D ⊆ U
with |f(U)| = 1 for all U ∈ D. Instead of f(U) = {(s, r)} we write f(U) = (s, r)
and regard f as a function rather than a correspondence.

A bargaining problem U ′ ∈ U is a positive affine transformation of a bar-
gaining problem U ∈ U if there are a ∈ R2

+ and b ∈ R2 such that U ′ = aU + b.
A bargaining problem U ∈ U is symmetric if (x1, x2) ∈ U ⇔ (x2, x1) ∈ U for
all x ∈ R2.

The first condition is an extended version of the usual Pareto optimality
condition.

Extended Pareto Optimality (EPO): For each U ∈ D, f(U) ∈ P (U) × AP (U).

In particular from a normative view point it is natural to require Pareto op-
timality of the compromise outcome. Requiring anti-Pareto optimality of the
disagreement outcome reflects that we wish this outcome to be as severe as
possible in order to induce acceptance of the compromise outcome.8

The following two conditions are standard in classical axiomatic bargaining
theory. They have similar justifications in the present model.

8Disagreement poses a threat to the players only if s > r (where f(U) = (s, r)), as a referee
rightly noticed. In our two characterization results, EPO could be weakened by restricting
the anti-Pareto optimality requirement on r to those cases in which s > r.
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Symmetry (SYM): For each symmetric U ∈ D, if f(U) = (s, r) then s1 = s2

and r1 = r2.

Scale Invariance (SI): For all U ∈ D and a ∈ R2
+, b ∈ R2 with aU + b ∈ D, if

f(U) = (s, r) then f(aU + b) = (as + b, ar + b).

We now turn to axioms used in only one of our two characterizations. The
first characterization is based on an informational restriction which extends
and modifies similar conditions used in characterizations of the classical Kalai-
Smorodinsky solution.

Independence of Non-Utopia Information (INU): For all U, V ∈ D, if f(V ) =
(s, r) ∈ P (U) × AP (U), u(U, r) = u(V, r) and a(U, s) = a(V, s), then f(U) =
(s, r).

This condition says that if f(V ) = (s, r) and we consider a problem U such
that s and r are Pareto and anti-Pareto optimal in U and also the associated
utopia and anti-utopia points do not change, then the solution does not change:
f(U) = (s, r) as well.

Our second characterization replaces INU by three other axioms, each of
which seems normatively defensible and extends classical axioms. The first of
these axioms requires that the compromise outcome weakly Pareto dominates
the disagreement outcome, i.e., that the disagreement outcome is a threat to
both players.

Pareto Dominance (PD): For every U ∈ D, if f(U) = (s, r) then s > r.

The next condition requires that the outcome for any bargaining problem U
be unchanged if one removes possible alternatives x from U that are extreme
in the sense of giving some individual even less utility than under the original
disagreement outcome while giving the other individual even more utility than
under the original compromise outcome.

Independence of Extreme Alternatives (IEA): For all U, U ′ ∈ D, writing (s, r) =
f(U), if U ′ ⊆ U and for every x ∈ U\U ′ there is an agent i such that xi < ri

and xj > sj for j 6= i, then f(U ′) = f(U).

This condition is a weak version of the condition of IIA (Independence of
Irrelevant Alternatives, extended to endogenous disagreement), which underlies
the extended Nash bargaining solution. IEA relaxes IIA by restricting it to the
case that two sets U and U ′ differ only in ‘extreme’ alternatives.

The final condition is a variant of classical monotonicity conditions. It is
well-known from classical bargaining theory that plausible bargaining solutions
usually satisfy some but not any kind of monotonicity property. Our monotonic-
ity condition requires that if additional alternatives become available, then, at
least under certain extra conditions, the compromise outcome improves weakly
and the disagreement outcome worsens weakly for each player. Roughly speak-
ing, the justification is that additional possibilities should give room for better
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compromise outcomes but also worse disagreement outcomes. In order to for-
mulate the axiom we define, for a bargaining problem U ∈ D, the global utopia

point and the global anti-utopia point by

u(U) =

(
max
x∈U

x1, max
x∈U

x2

)
, a(U) =

(
min
x∈U

x1, min
x∈U

x2

)
.

Restricted Monotonicity (RM): For all U, U ′ ∈ D, writing (s, r) = f(U) and
(s′, r′) = f(U ′), if U ⊆ U ′, u(U ′) = u(U, r), and a(U ′) = a(U, s), then s′ ≥ s
and r′ ≤ r.

Clearly, the conditions on the utopia and global utopia points and the anti-
utopia and global anti-utopia points considerably restrict this monotonicity con-
dition.9

The domain D is closed under truncation if whenever it contains U then
it also contains every bargaining problem of the form {x ∈ U | α ≤ xi ≤ β}
for some i ∈ {1, 2} and α, β ∈ R with ai(U) 6 α < β 6 ui(U). The domain
D is minimally rich if it is closed under truncation and contains all polytopes
in Dk.10 For instance, the whole domain Dk and the (small) domain of all
polytopes in Dk are both minimally rich by Theorem 3.2.

Theorem 4.1 Let D ⊆ Dk be minimally rich and let f : D → R2 × R2 be a

solution satisfying |f(U)| = 1 for all U ∈ D. Then the following statements are

equivalent:

(a) f is the extended Kalai-Smorodinsky solution on D.

(b) f satisfies EPO, SYM, SI, and INU.

(c) f satisfies EPO, SYM, SI, PD, IEA, and RM.

The characterizations in Theorem 4.1 are tight. We show this by means of
examples of solutions defined on a minimally rich domain D ⊆ Dk. Proofs are
left to the reader. We start with demonstrating tightness of the six axioms in
characterization (c).

(1) For each U ∈ D, write (s, r) := k(U) and let f1(U) := (t, r), where t is the
point in [r, s] which is closest to s subject to U containing at least one of
the points (t1, a2(U, s)) and (a1(U, s), t2) (note that possibly t = s). Then
f1 satisfies SYM, SI, PD, IEA, and RM, but not EPO.

(2) Define the solution f2 in the same way as k but now based on a non-
symmetric version of the KS-solution (cf. Peters and Tijs, 1985). Such a
solution satisfies EPO, SI, PD, IEA, and RM, but not SYM.

9Note that the antecedent in RM implies that u(U) = u(U, r) and a(U) = a(U, s).
10A polytope is the convex hull of finitely many points in R

2.
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(3) Let T be the convex hull of (0, 0), (4, 0), and (0, 2). Define the solution f3

as follows. For all U ∈ D with T ⊆ U , a(U) = (0, 0), and u(U) = (4, 2),
define f3(U) as (s, (0, 0)) where s is the point of intersection of P (U) with
the line segment [(3, 1

2 ), (4, 2)]. Otherwise, define f3(U) = k(U). Then f3

satisfies EPO, SYM, PD, IEA, and RM, but not SI.

(4) For each U ∈ U , let (s(U), r(U)) := k(U), let ŝ(U) resp. r̂(U) be the
element of U with first coordinate r1(U) resp. s1(U) and with maximal
resp. minimal second coordinate, denote the set of non-extreme outcomes
relative to k by U = {x ∈ U | xi 6 si(U) or xj > ri(U) for all distinct i, j},
and call U ∈ U essentially symmetric if some positive affine transformation
of U is symmetric. For all U ∈ D, define f4(U) as (ŝ(U), r̂(U)) if [ŝ(U) ∈
P (U), r̂(U) ∈ AP (U) and U is not essentially symmetric], and as k(U)
otherwise. Then f4 satisfies EPO, SYM, SI, IEA, and RM, but not PD.

(5) For all U ∈ D, define f5(U) as (s, r) where s [r] is the intersection of
P (U) [AP (U)] with the line segment joining the global utopia point and
the global anti-utopia point of U . Then f5 satisfies EPO, SYM, SI, PD,
and RM, but not IEA.

(6) Let T be the convex hull of (0, 0), (4, 0), (2, 1), and (0, 1). For all U ∈ D,
define f6(U) as (s, b) if U = aT + b for some a ∈ R2

+, b ∈ R2, where s is
the Nash bargaining solution of (U, b), and as k(U) otherwise. Then f6

satisfies EPO, SYM, SI, PD, and IEA, but not RM.

Next, we show that the axioms in characterization (b) are tight.

(7) The solution f1 satisfies SYM, SI, and INU, but not EPO.

(8) The solution f2 satisfies EPO, SI, and INU, but not SYM.

(9) Let T be as in (3) and define the solution f7 by f7(T ) = ((3, 1
2 ), (0, 0)),

and by f7(U) = k(U) for all U ∈ Dk with U 6= T . Then f7 satisfies EPO,
SYM, INU, but not SI.

(10) The solutions f4, f5, and f6 all satisfy EPO, SYM, and SI, but not INU.

We conclude with a few remarks.

Remark 4.2 A partial characterization of the extended Kalai-Smorodinsky so-
lution on the whole domain U is provided in Valkengoed (2006)11, at the expense
of rather technical conditions.

Remark 4.3 Variations on the characterization of k can be obtained by impos-
ing different conditions of ‘minimal richness’. For instance, Theorem 4.1 would
still hold – with some modifications of the proof – on some subdomains of Dk

that contain all strictly convex bargaining problems.

11Master thesis, supervised by the third author of this paper.
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dation, Helsinki

Vartiainen H (2007) Collective choice with endogenous reference outcome.
Games and Economic Behavior 58, 172–180

12



A Appendix: proofs

Proof of Theorem 3.1. Let U ∈ U . Then AP (U) is the graph of a strictly
decreasing convex function g on an interval [α, β] with (α, g(α)) and (β, g(β))
the points of AP (U) with minimal and maximal first coordinates, respectively.
If α = β (so that AP (U) consists of a unique outcome) then {(KS(U, (α, g(α))),
(α, g(α)))} = k(U) and we are done. From now on we assume α < β. Define the
function ϕ : [α, β] → [α, β] by ϕ(γ) = −KS1(−U,−KS(U, (γ, g(γ)))). Observe
that if ϕ(γ∗) = γ∗ for some γ∗ ∈ [α, β] and KS(U, (γ∗, g(γ∗))) 6= (γ∗, g(γ∗))
then (KS(U, (γ∗, g(γ∗))), (γ∗, g(γ∗))) ∈ k(U).

Of course, ϕ(α) > α and ϕ(β) 6 β. Suppose that (α, g(α)) ∈ P (U). Then
ϕ(α) = α, but (KS(U, (α, g(α))), (α, g(α))) /∈ k(U) since KS(U, (α, g(α))) =
(α, g(α)). Below, however, we will prove:

There is an ε1 > 0 with ϕ(γ) > γ for all γ ∈ (α, α + ε1]. (1)

Similarly, if (β, g(β)) ∈ P (U) we have:

There is an ε2 > 0 with ϕ(γ) < γ for all γ ∈ [β − ε2, β). (2)

Clearly, we can then take ε1 and ε2 in (1) and (2) such that α + ε1 < β − ε2.
Now define the interval [α′, β′] by α′ = α if (α, g(α)) /∈ P (U) and α′ = α +
ε1 if (α, g(α)) ∈ P (U), and β′ = β if (β, g(β)) /∈ P (U) and β′ = β − ε2 if
(β, g(β)) ∈ P (U). Then, since ϕ is continuous, the intermediate value theorem
implies that in all cases there is a point γ∗ ∈ [α′, β′] with ϕ(γ∗) = γ∗ and
KS(U, (γ∗, g(γ∗))) 6= (γ∗, g(γ∗)) and, thus, k(U) 6= ∅.

z

m

ℓ

x

u(U, x)

y

a(U, y)

c[x]

c[y]

Figure 2: Illustrating the proof of (1)

We are left to prove (1) and (2). We only show (1), the proof of (2) is
analogous. So suppose z := (α, g(α)) ∈ P (U). See Figure 2 for an illustration
of the remainder of the proof.
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Let m and ℓ be the supporting lines of U at z as drawn in Figure 2. (That
is, m is the limit of supporting lines at P (U) and ℓ is the limit of supporting
lines at AP (U).) Let µ be the absolute value of the slope of m and let λ be the
absolute value of the slope of ℓ. Then λ > µ.

For x ∈ AP (U) \P (U) let σ(x) denote the slope of the straight line through
x and u(U, x). Let c[x] denote the line segment with endpoints (x1, u2(U, x))
and (u1(U, x), x2). Then σ(x) is equal to the absolute value of the slope of c[x].
Therefore, σ(x) converges to µ if x ∈ AP (U) converges to z.

For y ∈ P (U) \AP (U) let τ(y) denote the slope of the straight line through
y and a(U, y). Let c[y] denote the line segment with endpoints (y1, a2(U, y))
and (a1(U, y), y2). Then τ(y) is equal to the absolute value of the slope of c[y].
Therefore, τ(y) converges to λ if y ∈ P (U) converges to z.

We conclude that τ(y) > σ(x) for y ∈ P (U) and x ∈ AP (U) close to z. This
implies the existence of an ε1 as in (1). �

Proof of Theorem 3.2

For the only-if part, suppose that [x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) are as
in the Theorem. Let r̄ ∈ [x̄, x] with r̄1 = ȳ1 and r ∈ [x̄, x] with r2 = y

2
. For

each r ∈ [r̄, r] let s(r) ∈ [ȳ, y] with s(r)2 − r2 = v/2. Then it is straightforward
to check that (s(r), r) ∈ k(U) for each r ∈ [r̄, r]. Thus, U /∈ Dk. See Figure 3
for an illustration.

r

r

r

r

r

r

r

s(r)

r

r

r

r

x̄

r̄

r

x

ȳ

s̄

s

y

v

h

Figure 3: Illustrating the proof of Theorem 3.2

We now prove the if-part. Assume U /∈ Dk, i.e. |k(U)| > 1. We will construct
[x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) as in the theorem.

For any x ∈ AP (U) let σ(x) denote the slope of the straight line through x
and u(U, x) (as in the proof of Theorem 3.1). Since σ(x) is equal to the absolute
value of the slope of the line segment c[x] connecting the points (x1, u2(U, x))
and (u1(U, x), x2), and the absolute values of these slopes weakly increase if x1

increases – the line segments c[x] are chords of the weakly decreasing concave
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function the graph of which contains the Pareto optimal set of U – we have that
σ(x) weakly increases if x1 increases. (∗)

Similarly, for any y ∈ P (U) let τ(y) denote the slope of the straight line
through y and a(U, y) (again as in the proof of Theorem 3.1). Then by an
analogous argument τ(y) weakly increases if y1 decreases. (∗∗)

Let (s̄, r̄) and (s, r) be the elements of k(U) with maximal and minimal
second coordinates, respectively. By definition of k we have τ(s) = σ(r) for
all (s, r) ∈ k(U). Therefore, by (∗) and (∗∗) we must have σ(x) = τ(y) for
all x ∈ AP (U) with r̄1 6 x1 6 r1 and all y ∈ P (U) with s̄1 6 y1 6 s1.
In particular, σ(x) is constant for r̄1 6 x1 6 r1, which implies that the line
segments c[x] for x ∈ [r̄, r] are parallel; but this means that they must be on the
same straight line m through s̄ and s. Let ȳ be the upper endpoint of c[r̄] and let
y be the lower endpoint of c[r]. Then [ȳ, y] ⊆ P (U), ȳ1 = r̄1 and y

2
= r2. See,

again, Figure 3 for an illustration. Similarly, let ℓ be the straight line through
r̄ and r, then [x̄, x] ⊆ AP (U), where x̄ is the point of ℓ with x̄2 = s̄2 and x is
the point of m with x1 = s1. Now it is straightforward to check that [x̄, x] and
[ȳ, y] satisfy the conditions in the theorem. �

Proof of Theorem 4.1.

(1) We first prove that (a) implies (b) and (c). We leave verification of EPO,
SYM, SI, INU, PD, and IEA of k on D to the reader. To show RM, consider
U, U ′ ∈ D satisfying the antecedent of RM, i.e., U ⊆ U ′, u(U ′) = u(U, r), and
a(U ′) = a(U, s), where (s, r) := k(U). Since r < s and U ⊆ U ′, there are unique
points r̄ < s̄ in the intersection of the line through r and s with the boundary
of U ′. We show that (s̄, r̄) = k(U ′), which completes the proof of RM since,
clearly, r̄ ≤ r and s̄ ≥ s. Note that u(U ′, r̄) ≤ u(U ′) = u(U, r) ≤ u(U ′, r̄), so
that u(U ′, r̄) = u(U, r), whence KS(U ′, r̄) = s̄. Similarly, a(U ′, s̄) ≥ a(U ′) =
a(U, s) ≥ a(U ′, s̄), so that a(U ′, s̄) = a(U, s), whence KS(−U ′,−s̄) = −r̄. It
follows that k(U ′) = (s̄, r̄).

(2) We now prove that (b) implies (a). Suppose f satisfies the four conditions
in (b) and let U ∈ D. We have to prove that f(U) = k(U). Let k(U) = (s, r) ∈
P (U)×AP (U). Then s > r (this follows from the requirement that there must
be x, y ∈ U with x > y). Let V be the convex hull of the six points s, r,
(s1, a2(U, s)), (a1(U, s), s2), (u1(U, r), r2), and (r1, u2(U, r)). We will prove that
V ∈ D and f(V ) = (s, r). This will conclude the proof of (b) ⇒ (a), since by
INU, f(V ) = (s, r) implies f(U) = (s, r) and, thus, f(U) = k(U).

Consider the positive affine transformation

(x1, x2) 7→ (ϕ1(x1), ϕ2(x2)) :=

(
x1 − r1

s1 − r1
,
x2 − r2

s2 − r2

)

which maps r to (0, 0), s to (1, 1), and V to some set V ′. Then V ′ is the convex
hull of the set

{(0, 0), (1, 1), (1, a2(U,s)−r2

s2−r2

), (a1(U,s)−r1

s1−r1

, 1), (u1(U,r)−r1

s1−r1

, 0), (0, u2(U,r)−r2

s2−r2

)} .
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Note that

a2(U, s) − r2

s2 − r2
=

a1(U, s) − r1

s1 − r1
and

u2(U, r) − r2

s2 − r2
=

u1(U, r) − r1

s1 − r1
.

Thus, V ′ is a symmetric polytope, and it is sufficient to prove that V ′ ∈ Dk: for
this implies V ∈ D by minimal richness of D; and by SYM and EPO, we have
f(V ′) = ((1, 1), (0, 0)) and thus, by SI, f(V ) = (s, r).

(0, 0)

(1, 1)
(0, β)

(β, 0)

(1, α)

(α, 1)

V ′

a

b
c

d

r

r

r

r
r

r

Figure 4: Illustrating the proof of part (2) of Theorem 4.1. The letters a, b, c, d
denote line segments, α = ϕ1(a1(U, s)) = ϕ2(a2(U, s)), and β = ϕ1(u1(U, r)) =
ϕ2(u2(U, r))

We are left to prove that V ′ ∈ Dk, i.e., that |k(V ′)| = 1. Consider Figure 4
with notations as there. For k(V ′) to be non-unique there are, in view of
Theorem 3.2, two possible cases to examine: (1) a is parallel to d and (2) a
is parallel to c. (The cases involving b are analogous.) In case (1) we must have
β = 1 − α > 1. Denote the vertical and horizontal distances between a and
d by v and h, then the length of a is equal to

√
1 + α2 whereas

√
v2 + h2 >√

β2 + β2 >
√

1 + α2, so that a does not satisfy condition (ii) in Theorem 3.2.
In case (2) we must have β = 2 and α = −1. In particular, AP (V ′) is the line
segment [(−1, 1), (1,−1)] and P (V ′) is the line segment [(0, 2), (2, 0)], so that
again condition (ii) in Theorem 3.2 is violated.

(3) We finally prove that (c) implies (a). Suppose f satisfies the six condi-
tions in (b) and let U ∈ D. Let (s, r) := f(U). We proceed in several steps.

Claim 1. s > r.

To prove this claim, assume the contrary. As s > r by PD and s 6= r by
definition of a bargaining solution, we may assume s1 = r1 and s2 > r2 (the
other case is analogous).

Consider first the truncated set Û = {x ∈ U | x2 6 s2}, which is in D by

minimal richness. Note that for each x ∈ U \ Û we have x2 > s2 and hence

x1 < s1 = r1 as s ∈ P (U); so by IEA, f(Û) = f(U). Next consider the set

T = {x ∈ Û | x2 > r2}, which is again in D by minimal richness. Next,
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note that for each x ∈ Û \ T we have x2 < r2 and hence x1 > r1 = s1 as

r ∈ AP (Û); so again by IEA, f(T ) = f(Û). Altogether we have f(T ) = f(U)
where T = {x ∈ U | r2 6 x2 6 s2}. Moreover, by construction of T , we have
u(T, r) = u(T ) and a(T, s) = a(T ).

As T ) [s, r], we have u(T ) 6= s or a(T ) 6= r. Suppose u(T ) 6= s (the proof
is analogous if a(T ) 6= r). Then, since s ∈ P (T ), u(T ) /∈ T . Choose α, β ∈ R

with a2(T ) < α < u2(T ) and a1(T ) < β < u1(T ) such that the set

T ′ = conv{a(T ), (a1(T ), u2(T )), (u1(T ), a2(T )), (u1(T ), α), (β, u2(T ))}

is a positive affine transformation of a symmetric polytope and such that T ⊆
T ′. Then T ′ ∈ D as D is minimally rich and T ′ ∈ Dk by Theorem 3.2. Let
(s′, r′) = f(T ′). As T ′ is symmetric up to a positive affine transformation, SI
and SYM imply that r′, s′ ∈ T ′ ∩ [a(T ′), u(T ′)]. So, as u(T ′) 6∈ T ′, we have
s′ < u(T ′) = u(T ), whence in particular s′2 < u2(T ). On the other hand, since
T ⊆ T ′, u(T ′) = u(T ) = u(T, r) and a(T ′) = a(T ) = a(T, s), we have by RM
that s′ > s, so that s′2 = u2(T ). This contradiction completes the proof of
Claim 1.

Claim 2. Let U ′ = {x ∈ U | a(U, s) 6 x 6 u(U, r)}. Then U ′ ∈ D and
f(U ′) = (s, r).

To prove this, first observe that, since s > r by Claim 1, U ′ arises from U
by a double truncation. Hence, U ′ ∈ D. We next prove that all outcomes in
U \ U ′ are extreme alternatives in the sense of IEA. Suppose that x ∈ U with
x1 < r1. Suppose x2 6 s2. Since r < s, we have x < s, hence x > a(U, s).
Also, x < u(U, r) since s 6 u(U, r). Thus, x ∈ U ′. Hence, if x ∈ U \ U ′ then
x1 < r1 implies x2 > s2. Similarly, x ∈ U \ U ′ and x2 < r2 imply x1 > s1.
Suppose now x ∈ U and x > r. Then x 6 u(U, r) and since r < s, whence
r > a(U, s), we have x > a(U, s), so that x ∈ U ′. Altogether we have proved
that the antecedent of IEA holds for U ′ ⊆ U , so that f(U ′) = (s, r).

In view of Claim 2 and the definition of k it is sufficient to prove that f(U ′) =
k(U ′). In view of SI of f and k we may assume that a(U ′, s) = (0, 0) and
u(U ′, r) = (1, 1). Denote L = [(0, 0), (1, 1)] and U0 = {x ∈ R2 | (0, 0) 6

x 6 (1, 1)}. If r, s ∈ L then clearly k(U ′) = (s, r) = f(U ′) and we are done.
Otherwise, without loss of generality s /∈ L. We proceed by choosing ŝ, r̂ ∈ L
as follows. If r /∈ L then choose ŝ, r̂ such that: (i) ŝ 6> s, r̂ 66 r; (ii) there is a
line ℓ through ŝ intersecting the boundary of U0 at points (α, 1) and (1, β) such
that r̂1 < α < 1, r̂2 < β < 1 and such that the set U ′ is weakly below ℓ; (iii)
there is a line m, not parallel to ℓ, through r̂ intersecting the boundary of U0 at
points (0, γ) and (δ, 0) such that 0 < γ < ŝ2, 0 < δ < ŝ1 and such that the set
U ′ is weakly above m.12 See Figure 5 for an illustration. If r ∈ L then we still

12The first candidates for ŝ and r̂ are the points s′ and r′, where s′ is the point of intersection
of L and P (U ′) and r′ is the point of intersection of L and AP (U ′); and for ℓ and m the lines
through s′ and r′ supporting U ′. If those lines happen to be parallel, or if one or more of
the numbers α, β, γ, and δ do not satisfy the desired constraints, one can take ŝ = s′ + (ε, ε)
and/or r̂ = r′ − (ε′, ε′), where 0 < ε, ε′ are sufficiently small, and shift up and if necessary
slightly rotate ℓ and/or m.
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choose ŝ as above but set r̂ = (0, 0), and γ = δ = 0. Let V be the polytope with
vertices (0, 1), (1, 0), (α, 1), (1, β), (0, γ), and (δ, 0). Then V ∈ Dk by Theorem
3.2 and therefore V ∈ D since D is minimally rich.

(0, 0)

(1, 1)

(δ, 0)

(1, β)

(α, 1)

(0, γ)

r̂

ŝ

r

s

r

r

r

r

r

r

r r

r

r

rr

r

r

r

r

V

W

Figure 5: Illustrating the proof of part (3) of Theorem 4.1. The black curve is
the boundary of the set V and the gray curve is the boundary of the set W .

Claim 3. f(V ) ∈ {x ∈ V : x ≥ s} × {x ∈ V : x ≤ r}.
The claim follows from RM and Claim 2, noting that U ′ ⊆ V and that u(V ) =
u(U ′, r) (= (1, 1)) and a(V ) = a(U ′, s) (= (0, 0)).

Let W be the convex hull of the points ŝ, r̂, (ŝ1, 0), (1, r̂2), (0, ŝ2), and (r̂1, 1).

Claim 4. W ∈ D and f(W ) = (ŝ, r̂).

That W ∈ D, in particular that W ∈ Dk, follows by the same argument as
used in the last part of (2) above. Since W is symmetric, EPO and SYM imply
f(W ) = (ŝ, r̂).

Claim 5. f(V ) = (ŝ, r̂).

To prove this, we note that by construction of V and W we have (1, 1) = u(V ) =
u(W, r̂) and (0, 0) = a(V ) = a(W, ŝ). Since W ⊆ V , the claim follows from RM
and Claim 4.

We can now complete the proof of part (3) and the theorem. Claim 5, Claim 3,
and the definition of ŝ and r̂ imply that we must have s, r ∈ L since otherwise
we obtain a contradiction. But in that case we have (s, r) = k(U ′) = f(U ′). �
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